

High protection vector frequency converter
KD600/IP65 Series
User Manual

Preface

K-DRIVE is a professional enterprise engaged in the research and development, production, and sales of industrial automation control related products. It is positioned to serve high-end equipment manufacturers, based on industrial automation control technology with independent intellectual property rights. Its main business model is to quickly provide personalized solutions for customers, and it is continuously committed to promoting industrial upgrading with leading technology, quickly providing customers with more intelligent and accurate solutions More cutting-edge comprehensive products and solutions.

K-DRIVE has core technology platforms such as crane drive control, high-performance vector, servo drive, and permanent magnet synchronous motor drive. The product includes universal frequency converters, four quadrant frequency converters, energy feedback units, industry drive control integrated machines, servo drives, servo controllers, and other products. The product is widely used in metallurgy, mining, cement, petroleum, municipal engineering, machine tools, rubber and plastic, logistics, HVAC, construction machinery and other fields. At the same time, the product is sold in 17 countries including Russia, India, Brazil, and Vietnam.

ATTENTIONS

> Please power off when wiring.
> Electronic components inside AC drive are especially sensitive to static electricity, do not put anything into internal of AC drive.And do not touch main circuit board.
> After power cut, if indicator is still lamp, it still have high voltage in AC drive. It is very dangerous, please do not touch internal circuit and components.
> Please ensure the grounding terminals of AC drive is grounded correctly.
> Never connect input power supply with output terminal U,V,W of AC drive.

Connection to peripheral devices:

Do not install capacitors or surge suppressors on the output side of the frequency converter, as this may cause faults in the frequency converter or damage to the capacitors and surge suppressors. The input/output (main circuit) of the frequency converter contains harmonic components, which may interfere with the communication equipment of the frequency converter accessories. Therefore, install anti-interference filters to minimize interference.

Contents

Chapter 1 Safety and Attentions
1.1 Safety Matters 6
1.2 Use Considerations 9
Chapter 2 Product Brief Introduction
2.1 Position and content of nameplate 12
2.2 Naming rules 12
2.3 Model and Technical Data 13
2.4 Technical Features 14
2.5 Product Appearance 17
2.6 Appearance and installation dimensions 18
2.7 Optional accessories 19
2.8 Expansion Card 19
Chapter 3 installation
3.1 Mechanical installation 22
3.2 Electrical Installation 23
3.3 Basic wiring diagram 26
3.4 Main circuit terminals and connection 29
3.5 Control circuit terminal and wiring 30
Chapter 4 Operation and Display
4.1 Keypad description 38
4.2 Organization of Inverter Function Codes 40
4.3 Function code viewing and modification method description 40
Chapter 5 Synchronous Motor Open Loop Vector (SVC) Commissioning Instructions
5.1 Set the synchronization type, control method and motor parameters 44
5.2 Parameter identification 44
5.3 No-load test run. 44
5.4 Quick start test run 45
5.5 Load and run 45
Chapter 6 Troubleshooting and Countermeasures
6.1 Fault alarm and countermeasures 48
6.2 Common faults and their solutions. 53
6.3 Common faults of synchronous motors and their solutions 55
Chapter 7 Modbus communication protocol
7.1 Communication frame structure. 58
7.2 Address Definition of Communication Parameters. 60
Chapter 8 Function \& Parameter Table
8.1 Functional group 66
Warranty
Warranty Card
Certificate of quality

Chapter

Safety and Attentions

1.1 Safety Matters 6
1.2 Use Considerations 9

Users are requested to read this chapter carefully when installing, commissioning and repairing this product and perform the operation according to safety precautions as set forth in this chapter without fail. Our company will bear no responsibility for any injury and loss as a result of any violation operation.

	Safety signs in this manual
DANGER	Dangers caused by operations beyond requirements may lead to serious injury, and even death.
CAUTION	angers caused by operations beyond requirements may lead to moderate damages or minor injuries, as well equ-ipment damages.

1.1 Safety Matters

Use Stage	Safety Grade	Precautions
Before Installation	(4) DANGER	Do not install the product if the package is with water, or component is missing or broken; Do not install the product if the label on the package is not identical to that on the inverter.
	! caution	Be careful of carrying or transportation. Risk of devices damage; \diamond Do not use damaged product or the inverters missing component .Risk of injury; \diamond Do not touch the parts of control system with bare hands. Risk of ESD hazard.
Installation	(4) DANGER	\diamond Installation base shall be metal or other non-flammable material. Risk of fire; \diamond Do not install inverter in an environment containing explosive gases, otherwise there is danger of explosion; \diamond Do not unscrew the fixing bolts, especially the bolts with red mark.
	(4) DANGER	Do not leave cable strips or screws in the inverter. Risk of inverter damage; Install the product at the place with less vibration and no direct sunlight;

Use Stage	Safety Grade	Precautions
Installation	(4) DANGER	\diamond Consider the installation space for cooling purpose when two or more inverters are placed in the same cabinet.
Wiring	(4) DANGER	\diamond Wiring must be performed by authorized and qualified personnel. Risk of danger; \diamond Circuit-breaker should be installed between inverter and the mains. Risk of fire; \diamond Make sure the input power supply has been completely disconnected before wiring. Failure to comply may result in personnel injury and/or equipment damage; \diamond Since overall leakage current of this equipment may be bigger than 3.5 mA , for safety's sake, this equipment and its associated motor must be well grounded so as to avoid risk of electric shock; Never connect the power cables to the output terminals $(\mathrm{U}, \mathrm{V}, \mathrm{W})$ of the AC drive. Pay attention to the marks of the wiring terminals and ensure correct wiring. Failure to comply will result in damage to the AC drive; \diamond Install braking resistors at terminals ($\mathrm{P}+$)and (P - or PB) only. Failure to comply may result in equipment damage.
	! caution	S Since all adjustable frequency AC drives from Our company have been subjected to hi-pot test before delivery, users are prohibited from implementing such a test on this equipment. Failure to comply may result in equipment damage. \diamond Signal wires should to the best of the possibility be away from main power lines. If this cannot be ensured, vertical cross-arrangement shall be implemented, otherwise interference noise to control signal may occur. \diamond If motor cables are longer than 100 m , it is recommended output AC reactor be used. Failure to comply may result in faults.
Before Power-on	(4) DANGER	\diamond Inverter shall be power-on only after the front cover is assembled. Risk of electrical hazard.
	(! caution	\diamond Verify that the input voltage is identical to the rated voltage of product, correct wiring of input terminals R,

Use Stage	Safety Grade	Precautions
Before Power-on	! caution	S, T or L1, L2 and output terminals U, V, and W, wiring of inverter and its peripheral circuits, and all wires should be in good connection. Risk of inverter damage.
After Power-on	(4) DANGER	Do not open the cover after power. Rick of electrical hazard; Do not touches any input/output terminals of inverter with bare hands. Rick of electrical hazard.
	(b) CAUTION	If auto tuning is required, be careful of personal injury when motor is running. Risk of accident; \diamond Do not change the defaults of parameters. Risk of devices damage.
During Operation	(4) DANGER	\triangleleft Non-professionals shall not detect signals during operation. Risk of personal injury or device damage; \diamond Do not touch the fan or the discharging resistor to check the temperature. Failure to comply will result in personal burnt.
	! caution	Prevent any foreign items from being left in the devices during operation. Risk of device damage; Do not control start/stop of inverter by ON/OFF of contactor. Risk of device damage.
Maintenance	(4) DANGER	\diamond Please do not make repair and maintenance over equipment in a charged state, or it will give rise to electric shock hazard! $\diamond A C$ drive can be put into maintenance and repair only you confirm the AC drive charge light out, or the remaining electric charge of capacitance will cause damages to people! \diamond Any people who are not trained professionally cannot make repair and maintenance, or it will cause personal injuries or equipment troubles!

1.2 Use Considerations

1.2.1 Motor Insulation Inspection

When the motor is used for the first time or when the motor is reused after being kept, or when periodical inspection is performed, insulation inspection shall be conducted with motor so as to avoid damaging the inverter because of the insulation failure of the motor windings. The motor wires must be disconnected from the inverter during the insulation inspection. It is recommended to use the 500 V mega meter, and the insulating resistance measured shall be $5 \mathrm{M} \Omega$ at least.

1.2.2 Motor Thermal Protection

If the motor rating does not match that of the inverter, especially when the rated power of the inverter is higher than that of the motor, adjust motor protection parameters in the inverter or install thermal relay to protect motor.

1.2.3 Operating with the Frequency Higher than Grid Power Frequency

Output frequency of is $0.00 \mathrm{~Hz} \sim 500 \mathrm{~Hz}$. If product is required to operate above 50.00 Hz , please take the endurance of mechanical devices into consideration.

1.2.4 Mechanical Vibrations

Inverter may encounter mechanical resonance point of the load device at certain output frequencies which can be avoided by setting the skip frequency parameters of the inverter.

1.2.5 Motor Heat and Noise

Since output voltage of inverter is PWM wave and contains a certain amount of harmonics, so that the temperature, noise and vibration of the motor will be higher than those when the inverter runs at grid power frequency.

1.2.6 Voltage-sensitive device or capacitor on output side of the AC drive

Do not install the capacitor for improving power factor or lightning protection voltage-sensitive resistor on the output side of the AC drive because the output of the AC drive is PWM wave. Otherwise, the AC drive may suffer transient overcurrent or even be damaged.

1.2.7 Contactor at the I/O terminal of the AC drive

When a contactor is installed between the input side of the AC drive and the power supply, the AC drive must not be started or stopped by switching the contactor on or off. If the AC drive has to be operated by the contactor, ensure that the time interval between switching is at least one hour since frequent charge and discharge will shorten the service life of the capacitor inside the AC drive;

When a contactor is installed between the output side of the AC drive and the motor, do not turn off the contactor when the AC drive is active. Otherwise, modules inside the AC drive may be damaged.

1.2.8 Applied with the Rated Voltage

Apply product with the rated voltage. Failure to comply will damage inverter. If required, take a transformer to boost or step-down voltage.

1.2.9 Do Not Apply a 3-Phase Input Inverter to 2-Phase Input Applications

Do not apply a 3-phase input FR inverter to 2-phase input applications. Otherwise, it will result in faults or damage inverter.

1.2.10 Lightning Protection

The product has integrated lightning over-current protection device which has certain self-protection capacity against the lightning. Additional protection devices have to be installed between inverter and power supply in the area where lightning occurs frequently.

1.2.11 Altitude De-rating

In places where the altitude is above 1000 m and the cooling effect reduces due to thin air, it is necessary to de-rate the AC drive. Contact Our company for technical support.

1.2.12 Adaptable Motor

Standard adaptive motor is quadrupole squirrel- cage asynchronous induction motor. If it is not above- mentioned motor, please select AC drive upon rated current of moter. If you need to drive permanent magnet synchronous motor, please consult our company;

The cooling fan of non variable frequency motor and rotor spindle are coaxially connected. While despinning, the fan cooling effect also declines at the same time.Hence, for overheated occasion of moter, you shall install strong exhaust fan or change variable frequency motor;

AC drives have built- in adaptive motor standard parameters. It is necessary to make motor parameter identification or amend default values to accord with actual values, or it will influence operation effects and protective values;

As short circuit existing inside cable or motor will cause inverter alarming, enen explosion. Therefore, please make insulation short- circuit test of initial installed motor and cable first. And the test also is necessary in routine maintenance.

Chapter

Product Brief Introduction

2.1 Position and content of nameplate 12
2.2 Naming rules 12
2.3 Model and Technical Data 13
2.4 Technical Features 14
2.5 Product Appearance. 17
2.6 Appearance and installation dimensions 18
2.7 Optional accessories 19
2.8 Expansion Card 19

Chapter 2 Product Brief Introduction

2.1 Position and content of nameplate

MODEL: KD600/P65-4T-1.5GB
SOURCE: PH AC380V 50/60HZ
OUTPUT: 1.5KW 4A 0-600HZ
|||I||||||||||||||||||||||||||||||||

2.2 Naming rules

No.	Content	Instructions		
1	Product series	KD600/IP65 High protection series		
2	Adaptive motor type	Empty: None	S: Synchronous motor	
3	Voltage level	$4: 380 \mathrm{~V}$		
4	Voltage classification	S: Single-phase	T: Three-phase	
5	Adaptive motor power	0.75 kw to 1200 kw	R indicates the decimal point	
6	Applicable model	G: General purpose		
7	Built-in brake unit	B: Built-in brake unit (B) : Optional Built-in brake unit	Empty: None	

2.3 Model and Technical Data

The parameters in the table below are the same for the KD600/IP65 series and KD600/IP65 series. For example, KD600/IP65-4T2.2GB has an input threephase 380 V , an input current of 5.8 , an output current of 5.1 A , and is suitable for ordinary motors of 2.2 kW ; KD600/IP65S-4T2.2GB has the same input and output, and is compatible with a synchronous motor of 2.2 kW .

| Product model | $\begin{array}{c}\text { Output current } \\ \text { (A) }\end{array}$ | $\begin{array}{c}\text { Input current } \\ (\mathrm{A})\end{array}$ | $\begin{array}{c}\text { Adaptive motor } \\ \text { (KW) }\end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| Single phase 220V range: -15\% to 20% | | | |$]$

Chapter 2 Product Brief Introduction

Product model	Output current (\mathbf{A})	Input current (\mathbf{A})	Adaptive motor (KW)
KD600/IP65-4T160G	307.0	304.0	160.0
KD600/IP65-4T185G	345.0	340.0	185.0
KD600/IP65-4T200G	385.0	380.0	200.0
KD600/IP65-4T220G	430.0	426.0	220.0
KD600/IP65-4T250G	468.0	465.0	250.0
KD600/IP65-4T280G	525.0	520.0	280.0
KD600/IP65-4T315G	590.0	580.0	315.0
KD600/IP65-4T355G	665.0	650.0	355.0
KD600/IP65-4T400G	785.0	725.0	400.0

2.4 Technical Features

	Technical Features	Description
	Highest frequency	Vector control: $0 \sim 600 \mathrm{~Hz}$ VF control: 0~1200Hz
	Carrier frequency	$1 \mathrm{~K} \sim 15 \mathrm{kHz}$; the carrier frequency can be adjusted automatically according to the load characteristics.
	Input frequency resolution	Digital setting: 0.01 Hz Analog setting: maximum frequency $\times 0.1 \%$
	Control mode	Open loop vector control (SVC), V/F control
	Starting torque	G type machine: $0.5 \mathrm{~Hz} / 180 \%$ (open loop vector control)
	Speed range	1: 200 (open loop vector control)
	Steady speed accuracy (speed control accuracy)	Open-loop vector control: $\leqslant \pm 0.5 \%$ (rated synchronous speed)
	Speed control stability	Open-loop vector control: $\leqslant \pm 0.3 \%$ (rated synchronous speed)
	Torque Response	$\leqslant 40 \mathrm{~ms}$ (open loop vector control)
	Overload capability	Model G: 150% rated current for 60 seconds; 180% rated current for 5 seconds
	Torque boost	Automatic torque boost; manual torque boost 0.1% ~ 30.0%

	Technical Features	Description
	V/F curve	Three ways: linear type; multi-point type; square type V/F curve
	Acceleration and deceleration curve	Linear or S-curve acceleration and deceleration mode; four kinds of acceleration and deceleration time; acceleration and deceleration time range $0.0 \mathrm{~s} \quad 3000.0 \mathrm{~s}$
	DC brake	DC braking frequency: $0.0 \mathrm{~Hz} \sim$ maximum frequency, braking time: 0.0~36.0 seconds, braking action current value: $0.0 \% \sim 100.0 \%$
	Jogging Control	Jog frequency range: $0.00 \mathrm{~Hz} \sim 50.00 \mathrm{~Hz}$; Jog acceleration and deceleration time $0.0 \mathrm{~s} \sim 3000.0 \mathrm{~s}$
	Simple PLC \& multi step speed operation	Built-in PLC or control terminal,16 steps speed can be set
	Built-in PID	Process control closed-loop control system can be easily realized
	Automatic voltage regulation(AVR)	When the grid voltage changes, it can automatically keep the output voltage constant
	Torque Limiting and Control	"Excavator" feature, automatically limit the torque during operation to prevent frequent overcurrent tripping; closedloop vector mode can realize torque control
0 \mathbf{N} 0 0 0	Power-on peripheral device safety self-check	It can realize safety detection of peripheral equipment such as grounding, short circuit, etc.
	Common DC bus function	It can realize the function of sharing the DC bus of multiple inverters
	JOG key	Programmable keys: forward and reverse running/jog running function selection
	Textile swing frequency control	Various triangular wave frequency control functions
	Fast current limiting function	The built-in fast current limiting algorithm reduces the probability of overcurrent reported by the inverter and improves the anti-interference ability of the whole machine
	Timing control	Timing control function: Set time range Oh~65535h
	Standardized keyboard extension cables	Customers can use standard network cables to extend the keyboard.
$\begin{aligned} & \text { ग } \\ & \stackrel{1}{5} \end{aligned}$	Run command channel	Three channels: operation panel given, control terminal given, serial communication port given. Switchable in a variety of ways

Chapter 2 Product Brief Introduction

Technical Features		Description
$\begin{aligned} & \text { D } \\ & \text { 드N } \end{aligned}$	Frequency source	There are 10 kinds of frequency sources: digital given, analog voltage given, analog current given, pulse given, serial port given. Switchable in a variety of ways
	Auxiliary frequency source	10 auxiliary frequency sources. Auxiliary frequency fine-tuning and frequency synthesis can be flexibly realized
	Input terminal	Five digital input terminals are standard, with up to nine digital input terminals (Al1 and Al2 can be used as DI terminals), compatible with active PNP or NPN input methods, and two analog input terminals. Al1 and Al2 can be used as voltage or current inputs. (If you need to expand the input and output terminal functions, please choose an expansion card)
	Output terminal	Digital output terminals (bipolar output), relay output terminals; Simulated output terminals, optional from $0 / 4 \mathrm{~mA}$ to 20 mA or $0 / 2 \mathrm{~V}$ to 10 V , capable of outputting physical quantities such as set frequency, output frequency, and speed
	LED Display	Display parameters
	LCD Display	Optional, Chinese/English/Russian prompts for operation content
	LCD parameter copy	The use of LED and LCD enables rapid replication of parameters
	Key lock and function selection	Part or all of the keys can be locked, and the scope of action of some keys can be defined to prevent misoperation
$\begin{aligned} & \stackrel{\sim}{\underset{\sim}{\omega}} \\ & \stackrel{1}{2} \end{aligned}$	Place of use	Indoor, no direct sunlight, no dust, corrosive gas, flammable gas, oil mist, water vapor, dripping water or salt, etc.
	Altitude	Below 1000 meters
	Ambient temperature	$-10^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}$ (Ambient temperature is $40^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$, please use with derating)
	Humidity	Less than $95 \% \mathrm{RH}$, no condensation
	Vibration	Less than $5.9 \mathrm{~m} / \mathrm{s} 2(0.6 \mathrm{~g})$
	Storage temperature	$-20^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}$
	Pollution level	2
	Product implementation of safety standards	IEC61800-5-1:2007
	Products comply with EMC standards	IEC61800-3:2005

2.5 Product Appearance

No.	Name	Description
$\mathbf{1}$	Keypad	LED display operation panel
2	Upper cover	Protect internal components
3	Lower cover	Protect internal components
4	Safety sign	Safety warning sign
$\mathbf{5}$	Mounting hole	Install fixing holes
$\mathbf{6}$	Bottom frame	Protect internal components
$\mathbf{7}$	Dogtag	Product information
$\mathbf{8}$	Waterproof joint	High protection External cables protect internal components

Chapter 2 Product Brief Introduction

2.6 Appearance and installation dimensions

Product model	Mounting dimension (mm)		Overall dimensio (mm)			Aperture (mm)	Net weight (kg)
	A	B	H	W	D		
Single phase 220 V range: -15% to 20%							
KD600/IP65-2S1.5G	100	230	240	165	176	Ф5	3.5
KD600/IP65-2S2.2G	100	230	240	165	176	Ф5	3.5
Three phase 380 V range: -15% to 20%							
KD600/IP65-4T0.75GB	90	205	215	140	160	Ф5	3.5
KD600/IP65-4T1.5GB	90	205	215	140	160	Ф5	3.5
KD600/IP65-4T2.2GB	90	205	215	140	160	Ф5	3.5
KD600/IP65-4T4.0GB	100	230	240	165	176	Ф6	4.2
KD600/IP65-4T5.5GB	100	230	240	165	176	Ф6	4.2
KD600/IP65-4T7.5GB	120	264	275	177	200	Ф6	6
KD600/IP65-4T011GB	130	315	325	205	205	Ф6	8
KD600/IP65-4T015GB	130	315	325	205	205	Ф6	8
KD600/IP65-4T018GB	175	370	380	250	215	Ф6	11.8
KD600/IP65-4T022GB	175	370	380	250	215	Ф6	11.8
KD600/IP65-4T030G(B)	190	435	450	300	220	Ф7	17
KD600/IP65-4T037G(B)	190	435	450	300	220	Ф7	17
KD600/IP65-4T045G(B)	245	555	570	370	280	Ф10	30
KD600/IP65-4T055G(B)	245	555	570	370	280	Ф 10	30
KD600/IP65-4T075G(B)	290	565	580	370	295	Ф 10	45

Product model	Mounting dimension (mm)			Overall dimensio (mm)		Aperture $(\mathbf{m m})$	Net weight $(\mathbf{k g})$
	A	B	H	W	D		
KD600/IP65-4T093G	290	565	580	370	295	$\Phi 10$	45
KD600/IP65-4T110G	320	688	705	420	300	$\Phi 10$	65
KD600/IP65-4T132G	320	688	705	420	300	$\Phi 10$	65
KD600/IP65-4T160G	400	1330	1360	515	380	$\Phi 14$	124
KD600/IP65-4T185G	400	1330	1360	515	380	$\Phi 14$	124
KD600/IP65-4T200G	400	1330	1360	515	380	$\Phi 14$	124
KD600/IP65-4T220G	500	1480	1510	625	415	$\Phi 14$	175
KD600/IP65-4T250G	500	1480	1510	625	415	$\Phi 14$	175
KD600/IP65-4T280G	500	1480	1510	625	415	$\Phi 14$	175
KD600/IP65-4T315G	500	1620	1650	735	450	$\Phi 14$	228
KD600/IP65-4T355G	500	1620	1650	735	450	$\Phi 14$	228
KD600/IP65-4T400G	500	1620	1650	735	450	$\Phi 14$	228

2.7 Optional accessories

The detailed functions and usage instructions of the optional accessories can be found in the relevant optional accessory instructions. If the above optional accessories are required, please specify them when placing an order.

Name	Model	Function	Remarks
Built-in braking unit	"B" after the product model number	For dynamic braking	Built-in braking unit is standard
	"(B)" after the product model number	For dynamic braking	Built-in braking unit is optional

2.8 Expansion Card

Name	Model	Function
IO Expansion Card 1	KD600-IO1	4 digital inputs, 1 relay output, 1 analog AO2 output, 1 digital Y2 output, 1 temperature detection (PT100/PT1000)
IO Expansion Card 2	KD600-IO2	2 digital inputs, 1 relay output, and 1 analog AO2 output
IO Expansion Card 3	KD600-IO3	1 relay output, 1 isolated MODBUS communication, 1 temperature detection (PT100/PT1000)

Chapter 2 Product Brief Introduction

Name	Model	Function
RS-485 communication card	KD600-ISO485	1-way isolated MODBUS communication adapter card
CAN communication expansion card	KD600-CAN	Communication adapter card
CANOPEN Commu- nication Expansion Card	KD600 Canopen	Communication adapter card
ProFinet communication card	KD600-PN	Communication adapter card
Profibus-DP communication card	KD600-DP	Communication adapter card
Ethercat communication card	KD600 EtherCAT	Communication adapter card
Open collector ABZ encoder card	KD600-PG1	Open collector PG card (PG card 1 can only be applied to asynchronous machines; compatible with complementary outputs, encoder card can output DC power with optional+12V or+5V (jumper selection))
Differential input ABZ encoder card	KD600-PG3	ABZ differential signal input PG card
Sine cosine encoder interface card	KD600-PG5	KD600-PG5 is a sine and cosine encoder card with frequency division output.
Rotating Transformer Interface Card	KD600-PG6	Suitable for rotary transformers, DB9 interface, optional shielded encoder cable.
Use the motherboard's 28P expansion socket J14 to support IO expansion cards or communica- tion expansion cards; The motherboard 18P cable socket J17 supports PG expansion cards, and the motherboard sockets J14 and J17 can be used simultaneously.		

Chapter

3

Installation

3.1 Mechanical installation 22
3.2 Electrical Installation 23
3.3 Basic wiring diagram 26
3.4 Main circuit terminals and connection 29
3.5 Control circuit terminal and wiring 30

3.1 Mechanical Installation

3.1.1 Installation Environment

> Environment temperature: Surrounding environment temperature has a great impact on lifetime of AC drive, and the operation environment temperature of $A C$ drive shall not exceed allowable temperature range $\left(-10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}\right)$.
> While AC drive is installed on the surface of inflaming retardants, and enough space around is necessary for heat dissipation. When AC drive works, it will produce plenty of heats. And make vertical installation onto supporting holder with screw.
> Please install it in some places that are not easy to vibrate. And the vibration shall not be larger than 0 . 6G. Especially pay attention to keep away from punching machine and other equipments.
> Avoid to be installed where there are direct sunlights, moist surroundings and water drops.
> Avoid to be installed where there are corrosivity, inflammability and explosive gas.
> Avoid to be installed where there are oil contamination, dirts and metal dusts.

3.1.2 Reminder of installation site

Single installation diagram

Multiple Installation Diagram

Figure 3-1 Installation diagram of AC drive

3.1.3 The installation of the model needs to pay attention to the problem of heat dissipation. So please note the following:

$>$ Please install the inverter vertically so that the heat can be dissipated upwards. But not upside down. If there are many inverters in the cabinet, it is better to install them side by side. In the occasions that need to be installed up and down, please refer to Figure 3-1 to install the heat insulation deflector.
$>$ The installation space is as shown in Figure 3-1 to ensure the cooling space of the inverter. However, please consider the heat dissipation of other components in the cabinet when arranging.
$>$ The mounting bracket must be made of flame retardant material.
$>$ For applications with metal dust, it is recommended to install the radiator outside the cabinet. At this time, the space in the fully sealed cabinet should be

3.2 Electrical Installation

3.2.1 Guidelines for selecting peripheral electrical components

The description of the selection guidance for peripheral electrical components of frequency converters in this section mainly takes G-type machines as an example, such as KD600/IP65S-4T4.0GB. Please refer to KD600/IP65-4T4.0GB selection.

Models	MCCB (A)	Contactor (\mathbf{A})	Cable of Input Side Main Circuit $\left(\mathbf{m m}^{2}\right)$	Cable of Output Side Main Circuit $\left(\mathbf{m m}^{2}\right)$	Cable of $\left(\mathbf{m m}^{2}\right)$
Three phase 380V range: -15\%~+20\%					
KD600/IP65-4T1.5GB	16	10	2.5	2.5	1.0
KD600/IP65-4T2.2GB	16	10	2.5	2.5	1.0
KD600/IP65-4T4.0GB	25	16	4.0	4.0	1.0
KD600/IP65-4T5.5GB	32	25	4.0	4.0	1.0
KD600/IP65-4T7.5GB	40	32	4.0	4.0	1.0
KD600/IP65-4T011GB	63	40	4.0	4.0	1.0
KD600/IP65-4T015GB	63	40	6.0	6.0	1.0

Chapter 3 Installation

Models	MCCB (A)	Contactor (\mathbf{A})	Cable of Input Side Main Circuit $\left(\mathbf{m m}^{2}\right)$	Cable of Output Side Main Circuit $\left(\mathbf{m m}^{2}\right)$	Cable of $\left(\mathbf{m m}^{2}\right)$
KD600/IP65-4T018GB	100	63	6	6	1.0
KD600/IP65-4T022GB	100	63	10	10	1.0
KD600/IP65-4T030G(B)	125	100	16	10	1.0
KD600/IP65-4T037G(B)	160	100	16	16	1.0
KD600/IP65-4T045G(B)	200	125	25	25	1.0
KD600/IP65-4T055G(B)	250	125	35	25	1.0
KD600/IP65-4T075G(B)	250	160	50	35	1.0
KD600/IP65-4T093G	350	160	70	35	1.0
KD600/IP65-4T110G	350	350	120	120	1.0
KD600/IP65-4T132G	400	400	150	150	1.0

3.2.2 Instructions for using peripheral electrical components

Accessory Name	Installation position	Function Description
Air switch	Input circuit front end	Power outage during overcurrent of downstream equipment
Contactor	Between the air switch and the input side of the frequency converter	Power on/off operation of frequency converter. Frequent power on and off operations on the frequency converter through contactors (less than twice per minute) or direct startup operations should be avoided
AC input		
reactor	Input side of frequency converter	s Improve the power factor on the input side; \& Effectively eliminating high-order harmonics on the input side to prevent damage to other equipment caused by voltage waveform distortion;
s Eliminate input current imbalance caused by		
power supply phase imbalance.		

3.2.2 Instructions for using peripheral electrical components

Accessory Name	Installation position	Function Description
DC Reactor	75kW~132kW DC reactor as an optional accessory	\diamond Improve the power factor on the input side; \diamond Effectively eliminate high-order harmonics on the input side and prevent damage to other equipment caused by voltage waveform distortion.
EMC input filter	Input side of frequency converter	\diamond Reduce external conduction and radiation interference of frequency converters; \triangleleft Reduce conducted interference from the power supply end to the frequency converter and improve the anti-interference ability of the frequency converter.
AC output reactor	Install near the frequency converter between the output side of the frequency converter and the motor.	\diamond The output side of the frequency converter generally contains a lot of high-order harmonics. When the distance between the motor and the frequency converter is far, there is a large distributed capacitance in the circuit. One of the harmonics may cause resonance in the circuit, resulting in two impacts: \triangleleft Damaging the insulation performance of the motor can damage the motor over time. \triangleleft Generate significant leakage current, causing frequent protection of the frequency converter. \diamond Generally, if the distance between the frequency converter and the motor exceeds 100 meters, it is recommended to install an output AC reactor.

3.3 Basic wiring diagram

Figure 3-2 Three-phase inverter below 2.2kW

Figure 3-3 Three-phase inverter above 4.0kW

Figure 3-4 IO1 expansion card

Figure 3-5 IO2 expansion card

Note:

> KD600/IP65 series with a power of 4 kW or above is an optional feature. If there is a demand, please specify when placing an order.

3.4 Main circuit terminals and connection

3.4.1 Three-phase inverter main loop terminal Description:

Terminal	Name	Function description
R, S, T	Three phase power input terminals	AC input three-phase power supply connection point
$\mathrm{P}(+),(-)$	DC bus positive and negative terminals	Common DC bus input point
P(+), PB	Brake resistor connection terminal	Connect the braking resistor
U, V, W	Frequency converter output terminal	Connecting three-phase electric motors
()2	PE grounding terminal	Grounding terminal

Wiring precautions:

Input power supply R, S, T: The input side wiring of the frequency converter has no phase sequence requirements.

DC bus $P(+)$ and (-): Note that there is residual voltage at the terminals of $D C$ bus $\mathrm{P}(+)$ and $(-)$ after a power outage. Wait for the power indicator light on the drive board to turn off and confirm the power outage for 10 minutes before proceeding with wiring operations, otherwise there is a risk of electric shock.

The wiring length of the braking unit should not exceed 10 m . Twisted pair or tight double wire parallel wiring should be used.

Do not directly connect the braking resistor to the DC bus, as it may cause damage to the frequency converter or even fire.

Connect terminals $\mathrm{P}(+)$ and PB of the braking resistor.
The selection of braking resistors should refer to the recommended values and the wiring distance should be less than 5 m . Otherwise, it may cause damage to the frequency converter.

Output side U, V, W of frequency converter:
Capacitors or surge absorbers should not be connected to the output side of the frequency converter, otherwise it may cause frequent protection or even damage to the frequency converter.

When the motor cable is too long, due to the influence of distributed capacitance, it is easy to generate electrical resonance, which can cause insulation damage to the motor or generate large leakage current to protect the frequency converter from overcurrent. When the length of the motor cable is greater than 100 m , an AC output reactor must be installed near the frequency converter.

Grounding terminal PE: The terminal must be reliably grounded, and the resistance of the grounding wire must be less than 0.1Ω. Otherwise, it may cause abnormal operation or even damage to the equipment. Do not share the grounding terminal with the N terminal of the power supply neutral wire.

3.5 Control circuit terminal and wiring

3.5.1 Schematic diagram of control circuit wiring terminal

Control board wiring terminals below 2.2 kW

GND	AO1	485-	DI1	DI2	DI3	DI4	HDI5	+24V	RA	RB	RC
+10V	Al1	AI2	485+	CME	COM	Y1	AO2	COM	TA	TB	TC

Control board wiring terminals below 4.0 kW

+10 V	Al1	Al2	DI1	DI2	DI3	DI4	HDI	T/A	T/B	T/C
GND	GND	AO1	+485	-485	CME	COM	Y1	AO2	COM	+24V

Expansion card IO1 wiring terminal

RA	RB	RC	COM	DI6	DI7	DI8
GND	TEMP	AI3	AO2	DI9	DI10	Y2

Expansion card IO2 wiring terminal

RA	RB	RC	AO2
DI6	DI7	COM	GND

3.5.2 Control terminal function description:

Sort	Terminal	Name	Function Description
Power supply	+10V-GND	External +10V power supply	Provide +10 V power supply to the outside, the maximum output current: 10 mA Generally used as working power supply of external potentiometer, potentiometer resistance range: $1 \sim 5 \mathrm{k} \Omega$
	24V-COM	External +24 V power supply	Provide +24 V power supply to the outside, generally used as the working power supply of digital input and output terminals and external sensor power supply, Maximum output current: 200 mA
Analog input	Al1-GND	Analog input terminal 1	Input range: DC0~10V/4~20mA, determined by the J 15 dial switch on the control board, factory set to voltage mode. Input impedance: 100K Ω.
	Al2-GND	Analog input terminal 2	Input range: DC0~10V/4~20mA, determined by the J 12 dial switch on the control board, factory set to voltage mode. Input impedance: $100 \mathrm{k} \Omega$ for voltage input and 500Ω for current input. (Optional accessory: IO1 supports AI3 function)
	Al3-GND	Analog input terminal 3	
Digital input	DI1-COM	Digital input 1	1. Optocoupler isolation, compatible with bipolar input, switched through DI toggle switch, factory set to NPN mode 2. Input impedance: $3.3 \mathrm{k} \Omega$ 3. Voltage range during level input: $9-30 \mathrm{~V}$ 4. Among them, HDI5 can be used as a highspeed input port, with a maximum input frequency of 50 KHz 5. Among them, DI6 to DI10 are expansion board interfaces. (Optional accessories: IO2 card supports DI6 and DI7 expansion; IO1 card supports DI6, DI7, DI8, DI9, DI10 expansion.)
	DI2-COM	Digital input 2	
	DI3-COM	Digital input 3	
	DI4-COM	Digital input 4	
	DI5-COM	Digital input 5	
	DI6-COM	Digital input 6	
	DI7-COM	Digital input 7	
	DI8-COM	Digital input 8	
	DI9-COM	Digital input 9	
	DI10-COM	Digital input 10	

\begin{tabular}{|c|c|c|c|}
\hline Sort \& Terminal \& Name \& Function Description \\
\hline Analog output \& AO1-GND
AO2-GND \& \begin{tabular}{l}
Analog output 1 \\
Analog output 2
\end{tabular} \& \begin{tabular}{l}
The voltage or current output is determined by the dial switch on the control board (refer to the terminal wiring diagram position number). \\
(Optional accessories: IO1 and IO2 support AO2 function) \\
Output voltage range: \(0-10 \mathrm{~V}\) \\
Output current range: \(0-20 \mathrm{~mA}\)
\end{tabular} \\
\hline \multirow[t]{2}{*}{Digital output} \& Y1-CME

Y2-CME \& \begin{tabular}{|l}
Digital output 1

\hline Digital output 2

 \&

Optocoupler isolation, bipolar open collector output

Output voltage range: $0 \sim 24 \mathrm{~V}$

Output current range: $0-50 \mathrm{~mA}$

Attention: The digital output ground CME and the digital input ground COM are internally isolated, but when they leave the factory, the CME and COM have been externally short circuited (at this time, the Y terminal defaults to +24 V drive). When the Y terminal wants to be driven by an external power source, the external short circuit between CME and COM must be disconnected.(Optional accessories: IO2 supports Y2 function)
\end{tabular}

\hline \& FM \& High speed pulse output \& | Programmable optocoupler isolation, open collector output, maximum frequency: 50 KHz . When the collector is open circuit output, it is consistent with the Y1 specification. |
| :--- |
| Output voltage range: 0/24VDC, output current range: 50 mA |

\hline Communic ation interface \& 485+,485- \& Modbus communication interface \& | Modbus communication interface. You can use the DIP switch (see terminal wiring diagram) to determine whether to match the resistance for communication. |
| :--- |
| For Profibus communication, select the KD600 series expansion card and select the ProFIBUS-DP card. |

\hline \multirow[b]{2}{*}{Relay output 1} \& TA-TB \& Normally closed terminal \& \multirow[b]{2}{*}{| Contact drive capability: |
| :--- |
| $\mathrm{AC} 250 \mathrm{~V}, 3 \mathrm{~A}, \operatorname{COS} \varphi=0.4$. $\mathrm{DC} 30 \mathrm{~V}, 1 \mathrm{~A}$ |}

\hline \& TA-TC \& Normally open terminal \&

\hline
\end{tabular}

Sort	Terminal	Name	Function Description
Relay	RA-RB	Normally closed terminal	Contact driving capability: (Optional parts output 2 2
	RA-RC	Normally open terminal	$\operatorname{COS} \varphi=0.4$. DC30V, 1A
Keyboard extension cable	Control board RJ45 interface	External keyboard interface	External keyboard interface can be extended by standard network cable. (Body keyboard is not removable, otherwise there is no IP protection)

3.5.3 Signal input terminal wiring instructions:

A. Al analog input terminal:

Because the weak analog voltage signal is particularly vulnerable to external interference, it is generally necessary to use a shielded cable, and the wiring distance is as short as possible, not more than 20 m , as shown below. In some cases where the analog signal is seriously interfered with, the filter capacitor or ferrite core should be added to the analog signal source.

Figure 3-6 Wiring diagram of analog input terminal

B. Digital input terminal:

DI wiring mode 1 (factory default wiring mode):
When the DI DIP switch is in NPN mode, no external power supply is used

Dl wiring mode 2 :
Use an external power supply when the DI DIP switch is in NPN mode

Figure 3-7 Digital input terminal NPN mode wiring diagram

Dl wiring mode 3 :
No external power supply is used when the DI DIP switch is in PNP mode

DI wiring mode 4 :
Use an external power supply when the DI DIP switch is in PNP mode

Figure 3-8 Digital input terminal PNP mode wiring diagram

Generally, it is necessary to use shielded cables, and the wiring distance is as short as possible, not more than 20 meters. When the active drive is selected, the necessary filtering measures should be taken to filter the crosstalk of the power supply. Contact control is recommended.

C. Y1 digital output terminal:

When the digital output terminal needs to drive the relay, an absorption diode should be installed on both sides of the relay coil, and the driving capacity is not more than 50 mA . Otherwise, it is easy to cause damage to the DC 24 V power supply.
Note: The polarity of the absorption diode must be installed correctly, as shown in Figure 3-15, otherwise when the digital output terminal has output, the DC 24 V power supply will be burned out immediately.

Figure 3-19 Digital output terminal Y1 wiring diagram

Chapter

Operation and Display

4.1 Keypad description 38
4.2 Organization of Inverter Function Codes 40
4.3 Function code viewing and modification method description 40

Chapter 4 Operation and Display

4.1 Keypad description

4.1.1 Keypad explanation and function

By using the operation panel, it is possible to modify the functional parameters of the frequency converter, monitor the working status of the frequency converter, and control the operation (start, stop) of the frequency converter. Its appearance and functions are shown in the following figure.

Figure 4-1 Display Operation Panel (Standard Configuration)

4.1.2 Function indicator description

Indicator sign	Name	meaning	Color
RUN	Operating status indicator	On - the inverter is running Off - Inverter is in stop state Flashing - the inverter is in sleep state	Green
L/D/C	Control mode indicator	Off - Inverter is in keypad control mode On - the inverter is in terminal control mode Flashing-Inverter is in remote communication control mode	Red
FWD/REV	Running direction indication	Off - Forward state On - inversion state Flashing - the target frequency is opposite to the actual frequency or is in the reverse running prohibited state	Red
TUNE/TC	Tuning/Torque Control/Fault Indicator	On - torque control Flashing - TuninglFault status	Red

4.1.3 Digital display area

5-digit LED display can display the set frequency, output frequency, various monitoring data and alarm codes. The function code is usually displayed as a decimal number. For example, the value of the P0-11 function code is displayed as " 50.00 ", which means the decimal number " 50.00 ". When the function code value is displayed in hexadecimal, the highest digit of the nixie tube displays "H.", indicating that the current function code value is displayed in hexadecimal. For example, the value of the P7-29 function code is displayed as " H . At this time, the value of P7-29 is the hexadecimal number " $0 \times 3 \mathrm{ff}$ ".

The user can freely set the monitoring data of stop and running status according to function code P7-29/P7-30, see function code P7-29/P7-30 for details.

4.1.4 Description of keyboard buttons

Button	Name	Function Description
PRG	Program / Escape key	Enter or exit the first-level menu, return to the upper-level menu
OK	Enter	Enter the menu screen step by step, set parameters to confirm
\wedge	Increment key (+)	Incremental data or function codes
\checkmark	Decrement key (-)	Decrement of data or function code
$>$	Shift key	In the stop display interface and the running display interface, the display parameters can be selected cyclically. For the specific display meaning, please refer to P7-29 and P7-30; when modifying the parameters, you can select the modification bit of the parameter
®	Run key	In keyboard operation mode, used to run operation
$\begin{array}{\|c\|} \hline \stackrel{\ominus}{4} \\ \hline \end{array}$	Stop/Reset key	In the running state, pressing this key can be used to stop the running operation; in the fault alarm state, it can be used to reset the operation. The characteristics of this key are restricted by the function code P7-27.
$\frac{\text { QUICK }}{\text { JOG }}$	Jog run/Direction keys	When P7-28 is set to 0 , it is the jog running button, and when P7-28 is set to 1 , it is the direction button. Press this button to reverse the direction.

4.2 Organization of Inverter Function Codes

Function code group	Function description	Illustrate
P0~PF	Basic function parameter group	Compatible with KD600/IP65 series function codes
A0~A3	Second motor parameter group	The second motor parameters, acceleration and deceleration time, control mode, etc. can be set independently
$\mathrm{B} 0 \sim \mathrm{~B} 6$	Enhanced function parameter group	System parameter setting, user function code customization, optimization control, Al/AO correction, master-slave control, brake function and sleep function;
$\mathrm{C} 0 \sim \mathrm{CF}$	Special plane function selection group	Choose to use different professional inverter functions;
$\mathrm{U} 0 \sim \mathrm{U} 1$	Monitoring parameter group	U0 is the fault record parameter group, and U1 is the user monitoring parameter, which is convenient to check the relevant output status;

4.3 Function code viewing and modification method description

AC drives adopts three-level menu structure for parameter setting and other operations. The three-level menus respectively are: functional parameter group(firstlevel menu) \rightarrow function code (second- level menu)-function code setting value (third-level menu). Operational process is shown in Figure 4-2:

Figure 4-2 Three-level menu operation flow chart

Note:

When operating in the third-level menu, you can press PRG key or ENTER key to return to the second-level menu. But pressing the ENTER key will save the current parameter modification value and transfer to the next function code; while pressing the PRG key will abandon the current parameter modification.

Example: Change function code P1-04 from 0.00 Hz to 5.00 Hz .

Figure 4-3 Parameter setting operation flow chart

In the third-level menu state, if the parameter has no flashing bit, it means that the parameter value of the function code cannot be modified. For the specific reason, please refer to the description of the function code attribute.

Chapter

Synchronous Motor Open Loop Vector (SVC) Commissioning Instructions

5.1 Set the synchronization type, control method and motor parameters 44
5.2 Parameter identification. 44
5.3 No-load test run. 44
5.4 Quick start test run 45
5.5 Load and run 45

5.1 Set the synchronization type, control method and motor parameters

(1) The motor type is set to synchronous motor and the control mode is SVC, that is, $P 0-03=11$.

Note:

The ten digit of $\mathrm{P} 0-03$ is the motor type selection, and the one digit is the control mode;
Tens place: 1: synchronous motor, 0 : asynchronous motor;
Ones place: 1: SVC, 2: VF, 3: Closed loop vector (reserved)
(2) Set P4-01~P4-06 according to the actual motor parameters.

5.2 Parameter identification

(1) Connect the motor, if there is a load, set P4-00 to 1 ; if it is an empty shaft, set P4-00 to 2, the digital tube will display TUNE, in order to ensure the control effect, the motor is best to be no-load and set P4-00 is 2 .
(2) Press the RUN key to perform parameter identification, and wait for TUNE to disappear, then the parameter identification ends.
(3) The identification process lasts for about 1 minute, and you can press the STOP button in the middle to exit. During this period, current will be sent, run the motor at the set acceleration and deceleration time to 60% of the rated frequency of the motor to observe whether the motor runs smoothly, if not, press STOP to exit, reach 60% of the rated frequency of the motor, and decelerate to stop after a period of time.
(4) After parameter identification, check whether the parameters of P4-17~ P4-20 are normal.

5.3 No-load test run

(1) Set the speed to a smaller range, such as $\mathrm{P} 0-11=20 \mathrm{~Hz}$.
(2) Press the run key to check whether the motor can accelerate to the set frequency and whether the motor current is small. If the motor can accelerate to the set frequency and the motor current is small, the inverter is basically normal. Set the frequency to the rated frequency of the motor and check whether the motor can accelerate to the set frequency.

5.4 Quick start test run, set it when quick start and stop are required, otherwise skip this step

Reduce the motor acceleration time (for example, set it to 1 second), change the speed loop and current loop PI parameter settings, and press the run key to check whether the motor can quickly accelerate to the set frequency.

5.5 Load and run

After the above 5 steps, you can run the motor with load and use the inverter normally.

Note:

Loading or changing the moment of inertia of the system, if the system response cannot achieve the expected effect, it is necessary to adjust the two parameters P3-04 and P3-06 appropriately. If you replace it with another motor, you generally need to set the rated frequency and rated current of the motor, and then perform parameter identification.

Chapter

 6
Troubleshooting and Countermeasures

6.1 Fault alarm and countermeasures 48
6.2 Common faults and their solutions 53
6.3 Common faults of synchronous motors and their solutions 55

6.1 Fault alarm and countermeasures

If a fault occurs during the system operation, the inverter will immediately protect the motor to stop the output, and the corresponding inverter fault relay contact will act. The inverter panel displays the fault code. The fault type and common solution corresponding to the fault code are shown in the following table. The list in the table is for reference only, please do not repair or modify it without authorization. If the fault cannot be eliminated, please seek technical support from our company or the product agent.

Table 6-1 Fault alarm and countermeasures

Fault name	Panel display	Troubleshooting	Troubleshooting Countermeasures
Inverter module protectio n	Err01	Whether the motor connection terminals U, V and W are short-circuited between phases or to ground Is the module overheated? - Whether the internal wiring of the inverter is loose - Whether the main control board, driver board or module is normal	- Contact short circuit - Are the fans and air ducts normal? - Connect all loose wires - Seek technical support
Overcurr ent during accelera tion	Err04	There is grounding or short circuit in the output circuit of the inverter - The motor parameters are incorrect - The acceleration time is too short - V/F torque boost or inappropriate curve - The input voltage is low - Start the rotating motor - Sudden load during acceleration - Inverter selection is too small	- Eliminate peripheral faults - Check parameters and parameter identification - Increase the acceleration time - Adjust the V/F boost torque or curve - Adjust the voltage to the normal range - Select the speed tracking start or wait for the motor to stop before starting - Cancel sudden load - Use inverters with larger power levels

Fault name	Panel display	Troubleshooting	Troubleshooting Countermeasures
Overcur rent during deceler ation	Err05	- There is grounding or short circuit in the output circuit of the inverter - The motor parameters are incorrect - The deceleration time is too short - The input voltage is low - Sudden load during deceleration - No braking unit and braking resistor - The magnetic flux braking gain is too large	Eliminate peripheral faults - Perform motor parameter identification - Increase the deceleration time - Adjust the voltage to the normal range - Cancel sudden load - Install braking unit and resistance - Reduce the magnetic flux braking gain
Overcur rent in constan t speed operatio	Err06	There is grounding or short circuit in the output circuit of the inverter The motor parameters are incorrect - The input voltage is low Is there a sudden load during operation? Inverter selection is too small	- Eliminate peripheral faults - Check parameters and parameter identification - Adjust the voltage to the normal range - Cancel sudden load - Select the inverter with a larger power level
Overvol tage during acceler ation	Err08	- The input voltage is too high - There is an external force driving the motor to run during the acceleration process - The acceleration time is too short - No braking unit and braking resistor - The motor parameters are incorrect	- Adjust the voltage to the normal range - Cancel external power or install braking resistor - Increase the acceleration time - Install braking unit and resistor - Check parameters and parameter identification
Overvol tage during deceler ation	Err09	- The input voltage is too high - There is an external force driving the motor to run during the deceleration process - The deceleration time is too short - No braking unit and braking resistor	- Adjust the voltage to the normal range - Cancel external power or install braking resistor - Increase the deceleration time - Install braking unit and resistor

Fault name	Panel display	Troubleshooting	Troubleshooting Countermeasures
Overvolt age during constant speed operation	Err10		

Fault name	Panel display	Troubleshooting	Troubleshooting Countermeasures
Current detection failure	Err17	- Whether the internal wiring of the inverter is loose - Is the current detection device normal? - Whether the main control board or driver board is normal	- Check the wiring - Seek technical support
Short to ground fault	Err20	- Motor short circuit to ground	- Replace the cable or motor
Input phase loss fault	Err23	- The three-phase input power supply is abnormal - The driver board is abnormal - The lightning protection board is abnormal - The main control board is abnormal	- Check and eliminate problems in peripheral circuits - Seek technical support
Output phase loss fault	Err24	- The lead wire from the inverter to the motor is abnormal - The three-phase output of the inverter is unbalanced when the motor is running - The driver board is abnormal - Module exception	Eliminate peripheral faults - Check whether the three-phase windings of the motor are normal and troubleshoot - Seek technical support
read and write failure	Err25	- EEPROM chip damaged	- Replace the main control board
Parameter	Err27	- Is the host computer working? - Is the communication connection normal? - Whether the communication parameter P8 group is correct	- Check the wiring of the host computer, etc. - Check the communication wiring - Check the parameters of P8 group
Parameter	Err28	- Input external normally open or normally closed fault signal through multi-function DI terminal	- Fault reset
Excessive speed deviation	Err29	- The load is too heavy and the set acceleration time is too short - The setting of fault detection parameters P9-31 and P9-32 is unreasonable	- Extend the set acceleration and deceleration time - Reset P9-31 and P9-32

Chapter 6 Troubleshooting and Countermeasures

Fault name	Panel display	Troubleshooting	Troubleshooting Countermeasures
User-defined fault 1	Err30	- User-defined fault 1 signal input through multi-function terminal DI	- Reset
User-defined fault 2	Err31	- User-defined fault 2 signal input through multi-function terminal DI	- Reset
PID feedback lost at runtime	Err32	- PID feedback value is less than the set value of PA-13	Check the feedback signal or reset the PA-13
Fast current limiting	Err33	- The load is too large or the stall occurs - The set acceleration time is too short	- Reduce the load or replace the inverter with a higher power - Properly extend the acceleration time
load drop failure	Err34	- When the load drop detection condition is reached, please refer to P9-28-P9-30 for specific use.	- Reset or reset detection conditions
input power failure	Err35	- The input voltage is not within the specified range - Power on and off too frequently	- Adjust the input voltage - Extend the power cycle
parameter storage exception	Err37	- Abnormal communication between DSP and EEPROM chip	- Replace the main control board Seek manufacturer service
The running time has arrived	Err39	- The current running time of the inverter > the set value of P7-38	- Reset
Accumulated running time reached	Err40	- The accumulated running time reaches the set value P7-20	- Use parameter initialization function 2 to clear the recording time or reset the accumulated running time
Switching motors during operation	Err42	- Switch the motor through the terminals during operation	- Motor switch after shutdown

Fault name	$\begin{array}{c}\text { Panel } \\ \text { display }\end{array}$	$\begin{array}{c}\text { Troubleshooting }\end{array}$	$\begin{array}{c}\text { Troubleshooting } \\ \text { Countermeasures }\end{array}$
$\begin{array}{c}\text { Master-slave } \\ \text { control } \\ \text { communication } \\ \text { dropped }\end{array}$	Err46	$\begin{array}{l}\text { The master is not set but } \\ \text { the slave is set }\end{array}$	$\begin{array}{l}\text { The communication line } \\ \text { is abnormal or the } \\ \text { communication } \\ \text { parameters are incorrect }\end{array}$

fault

Check the communication

line and communication

parameter P8 group\end{array}\right\}\)

6.2 Common faults and their solutions

The following fault conditions may be encountered during the use of the inverter, please refer to the following methods for simple fault analysis.

Table 6-2 Common faults and their solutions

Serial number	Fault phenomenon	Possible reason	Solution
1	No display when power on	- The grid voltage is not available or too low - The switching power supply on the drive board of the inverter is faulty - The rectifier bridge is damaged - The buffer resistance of the inverter is damaged - Control panel and keyboard failure - The connection between the control board, the driver board and the keyboard is broken	- Check the input power - Check the bus voltage - Re-plug the keyboard and the 30-pin cable - Seek manufacturer service
2	Display "Err20" alarm when power on	- The motor or output line is shortcircuited to ground - The inverter is damaged	- Use a shaker to measure the insulation of the motor and output line - Seek manufacturer service

| Serial
 number | Fault
 phenomenon | Possible reason |
| :---: | :---: | :---: | :--- |\quad| Solution |
| :--- |

6.3 Common faults of synchronous motors and their solutions

6.3.1 Motor starts with heavy load

If the motor does not start normally with load, you can try the following operations:
(1) Increase the upper limit of torque current (P3-21)

When the load is greater than the torque output of the inverter, the inverter will be in a locked-rotor state, and P3-21 can be appropriately increased at this time.
(2) Increase the speed Pl adjustment parameter, modify the resistance value or static identification to correct the motor resistance.

The motor resistance parameter (P4-17) will significantly affect the load carrying capacity of the motor at low speed. When the resistance parameter (P4-17) exceeds the actual resistance value by too much (for example, 200\% of the actual resistance value), it may cause the motor to reverse at low speed at the upper torque limit current. When the resistance parameter (P4-17) is too much lower than the actual resistance value (for example, 50% of the actual resistance value), it may cause the motor to run in a step-by-step manner, or rotate for a period of time and stop for a period of time. Increasing the speed P value P3-04 at low speed and reducing the speed loop integral time P3-05 may improve the problem caused by too small resistance parameters.

6.3.2 Adjust the speed loop Pl parameters (under normal circumstances do not need to adjust)

(1) In general, if the proportional coefficient of speed PI adjustment is too large, it will cause high-frequency vibration of the speed, and the mechanical vibration or electromagnetic noise will increase significantly; if the proportional coeffici ent is too small and the integration time is too small or the load inertia is too large, it will cause low-frequency vibration of the speed and overshoot of the speed. Obviously, if there is no discharge measures, there may be overvoltage.
(2) If you need to adjust the speed PI parameter, first increase the integral time, increase the ratio if the speed does not oscillate, and then decrease the integral time if the effect is not satisfactory. Generally, the larger the inertia of the syste m , the smaller the integral time and the larger the proportional coefficient. If the speed filter coefficient is increased, the integral time should be increased, and the proportion can be increased appropriately.

Note:

The inertia of the drive system is equal to the motor inertia plus the load inertia.
The inertia of the motor is proportional to the mass of the motor and the square of the diameter of the motor; the inertia of the transmission load is proportional to the mass of the load and the square of the diameter of the transmission wheel; if there is a deceleration or speed-up device, the inertia is proportional to the speed-up ratio and inversely proportional to the deceleration ratio .

For loads with large inertia, if fast speed response is required, the integration time needs to be reduced, but it is easy to cause speed overshoot, resulting in overvoltage of the inverter, and a discharge device is required to discharge. If there is no discharge device, the integration time can be increased.

6.3.3 Adjust the PI parameters of the current loop (under normal circumstances, do not need to adjust)

Under normal circumstances, increasing the proportional coefficient and the integral coefficient will speed up the current response speed, but if too large, it will cause speed shock (specifically, the motor does not rotate, or rotates in random directions, and emits high-frequency electromagnetic noise at the same time). If you need to adjust it, first Adjust the proportional coefficient, and adjust the integral coefficient if the effect is not satisfactory. The PI parameters of the current loop are related to the motor stator resistance, inductance, carrier frequency of the system, and current sampling filter time. When the carrier frequency of the system remains unchanged, the proportional coefficient is proportional to the inductance, and the integral coefficient is proportional to the resistance. Therefore, by identifying The output parameter can roughly determine the adjustment direction of this parameter.

Chapter

Modbus communication protocol

7.1 Communication frame structure 58
7.2 Address Definition of Communication Parameters. 60

Chapter 7 Modbus communication protocol

KD600M series inverter provides RS232/RS485 communication interface and supports Modbus communication protocol. Users can realize centralized control through computer or PLC, set inverter running commands, modify or read function code parameters, and read inverter wor-king status and fault information through this communication protocol.

7.1 Communication frame structure

RTU frame format:

Frame header START	3.5 character time
Slave address ADR	Communication address: $1 \sim 247$ (set by P8-02)
Command code CMD	03: Read slave parameters; 06: Write slave parameters
Data content DATA (N-1)	
Data content DATA (N-2)	Data content: Function code parameter address, function code parameter number, function code parameter value, etc.
Data content DATA0	Detection value: CRC16 check value. When transmitting, the low byte comes first and the high byte follows. For the calculation method, please refer to the description of CRC check in this section.
CRC CHK low order	3.5 character time
CRC CHK high bits	END

Command command (CMD) and data description (DATA)

Command code: 03 H , read N words (Word), can read up to 12 words and $\mathrm{N}=1 \sim 12$. The specific format is as follows:
Host read command frame

Slave read response frame

Host write command frame

Slave write response frame

If the slave detects a communication frame error, or fails to read and write due to other reas ons, it will reply with an error frame. Slave read response error frame:

Slave write response error frame

Example: read the contents of two consecutive parameters starting from P0-03 of the inverter whose slave address P8-02 is 01 .

The frame sent by the host is shown in the figure:

Frame header ≥ 3.5 Character	Slave address 0×01	Read command code 0×03	Function code address $0 \times F 0$ 0×03	Number of read function codes $0 \times 000 \times 02$	CRC check 0×07 $0 \times 0 \mathrm{~B}$	Finish

The slave reply frame is as shown in the figure:

Frame header							
≥ 3.5	Slave address 0×01	Read command code 0×03	Data bytes 0×04	P0.03 parameter value 0×00 0×00	P0.04 parameter value 0×00 0×00	CRC check $0 \times F A$ 0×33	Finish

Note: If the write command is unsuccessful, the failure reason will be returned.

7.2 Address Definition of Communication Parameters

This part is the content of communication, which is used to control the operation of the inverter, the status of the inverter and the setting of related parameters.

Read and write function code parameters (some function codes cannot be changed, and are only used by manufacturers or monitored):

Function code parameter address marking rules:
The rules are represented by the function code group number and label as the parameter address:

High-order byte: P0~PF (group P), A0~AF (group A), B0~BF (group B), C0~CF (group C),

D0~DF (group D), 70~7F (group U) low byte: 00~PF
Such as: P0-11, the address is expressed as F00B;
Notice:
PF group: parameters can neither be read nor changed;
Group U: can only be read, parameters cannot be changed.
Some parameters cannot be changed when the inverter is running; some parameters cannot be changed no matter what state the inverter is in; when changing the function code parameters, pay attention to the range, unit, and related descriptions of the parameters.

Chapter 7 Modbus communication protocol

Function code group	Communication visit address	Function code address of communication change RAM
PO~PE	0xF000 ~ 0xPEPF	0x0000 ~ 0x0EPF
A0 ~ AF	0xA000 ~ 0xAPFF	0x4000 ~ 0x4PFF
$\mathrm{BO} \sim \mathrm{BF}$	0xB000 ~ 0xBPFF	$0 \times 5000 \sim 0 \times 5$ PFF
CO ~ CF	0xC000 ~ 0xCPFF	0x6000 ~ 0x6PFF
U0, U1	0x70xx, 0x71xx	

Note that, because the EEPROM is frequently stored, the service life of the EEPROM will be reduced. Therefore, some function codes do not need to be stored in the communication mode, just change the value in the RAM.

If it is a parameter of group P, to realize this function, it can be realized only by changing the high-order F of the function code address to 0 .
If it is a group A parameter, to realize this function, just change the high-order A of the function code address to 4 to realize it.
The corresponding function code addresses are expressed as follows: high byte: 00~0F (group P), 40~4F (group A) low byte: 00~PF
For example, the function code P0-11 is not stored in the EEPROM, and the address is expressed as 000B; this address indicates that it can only be written to RAM, but cannot be read. When reading, it is an invalid address.

Stop/Run parameter section:

Address	Parameter Description
0X1000/ 0×9000	$1000:^{*}$ communication setting value (-10000~10000) (decimal) (unit: 0.01\%), readable and writable
	$9000:$ Communication setting frequency: 0HZ~P0-14 (minimum unit: 0.01 HZ), readable and writable
	Set frequency (unit: 0.01 Hz), read only
0×1002	Running frequency (unit: 0.01 Hz), read only
0×1003	Bus voltage (unit: 0.1V), read only
0×1004	Output voltage (unit: 0.1 V), read only
0×1005	Output current (unit: 0.1 A), read only
0×1006	Output power (unit: 0.1 kW), read only
0×1007	DI input flag (unit: 1), read only

Chapter 7 Modbus communication protocol

Address	Parameter Description
0×1008	DO output flag (unit: 1), read only
0×1009	PID setting (unit: 1), read only
$0 \times 100 \mathrm{~A}$	PID feedback (unit: 1), read only
$0 \times 100 \mathrm{~B}$	Al1 voltage (unit: 0.01V), read only
$0 \times 100 \mathrm{C}$	Al2 voltage (unit: 0.01V), read only
$0 \times 100 \mathrm{D}$	AO1 output voltage (unit: 0.01V) read only
$0 \times 100 \mathrm{E}$	PLC step (unit: 1), read only
$0 \times 100 \mathrm{~F}$	Speed (unit: 1rpm), read only
0×1010	Count value input (unit: 1), read only
0×1011	Input pulse frequency (unit: 0.01 kHz), read only
0×1012	Feedback speed (unit: 0.1 Hz), read only
0×1013	Remaining running time (unit: 0.1 min), read only

Example 1:

Read the operating frequency of the first device: $0 \times 010 \times 030 \times 100 \times 020 \times 000 \times 010 \times 21$ $0 x 0 \mathrm{~A}$
$0 \times 100 \times 02$ (1002) operating frequency address, $0 \times 000 \times 01$ (0001) a data $0 \times 210 x 0 \mathrm{~A}$ (210A) CRC check value

Example 2:

Read the bus voltage, output voltage and output current of the first devic-e at the same time: $0 \times 010 \times 030 \times 100 \times 030 \times 000 \times 03$ CRC check value, the meaning of the data is similar to that of example 1.

Note:

The communication setting value is a percentage of the relative value, 10000 corresponds to $100.00 \%,-10000$ corresponds to -100.00%.

For frequency dimension data, the percentage is relative to the maximum frequency (P0-14); for torque dimension data, the percentage is P3-21, P3-23, $\mathrm{A} 3-21, \mathrm{~A} 3-23$.

Note:

D0 output terminal needs to select 16 (communication control) function.
AO output needs to select 7 (communication control output) function.

Chapter 7 Modbus communication protocol

Type	Command address	Command content
Control command input (write only)	0×2000	0001: Forward run 0002: Reverse run 0003: Forward jog 0004: Reverse jog 0005: Coast to stop 0006: Decelerate to stop 0007: Fault reset 0008: Fault reset (only in communication control mode can fault reset)
Status read (read only)	0x3000	0001: Forward running 0002: Reverse running 0003: Stop
Digital output terminal	0x2001	BIT0: RELAY1 output control control (write only)
Analog output AO1 control (write only)	BIT2: RELAY2 output control	

Chapter 7 Modbus communication protocol

Type	Command address	Command content
Inverter fault address	0x8000	0017: Input phase loss 0018: Output phase loss 0019: EEPROM read and write abnormality 001A: Password input exceeded times 001B: Communication abnormal 001C: External fault 001D: Excessive speed deviation 001E: User-defined fault 1 001F: User-defined fault 2 0020: Loss of PID feedback during runtime 0021: Hardware current limit fault 0022: Loss of load 0023: Overload fault of buffer resistor 0024: The contactor is abnormal 0025: The agent running time has arrived 0026: Motor over temperature (reserved) 0027: Current running time reached 0028: Cumulative running time reached 0029: Power-on time reached 002A: Switching motor failure during operation 002B: Motor overspeed 002C: Reserved 002D: Reserved 002E: reserved 002F: point-to-slave fault

The return address when communication fails: read fault 83XX, write fault 86X.

Chapter 8

Function \& Parameter Table

8.1 Functional group 66

Chapter 8 Function \& Parameter Table

The function code symbols are explained as follows:

Icons	Content
	Indicates that the inverter parameters can be modified during stop and running (0)
	Indicates that the inverter is in a running state and cannot be modified (1)
	Indicates that this parameter is a manufacturer's parameter and cannot be changed by the user (3)
	Indicates the actual detection value of the inverter or the manufacturer's fixed value, which cannot be changed (2)

The communication address in the function parameter table is written in hexadecimal.

Enhanced function codes: Group A0~Group A3, Group B0~Group B6, opened by function parameter P7-75.

Function code	Name	Description (setting range)	Factory Default	Change
Group P0: Basic function group				
P0-00	Product number	Product model: 5 digits display, 2 decimal places	60\#.\#\#	\bigcirc
P0-01	Inverter GP type display	0: G type	0	\star
P0-02	Rated current	0.1A~3000.0A	Model is determined	\bigcirc
P0-03	Motor control method	Ones place: motor control mode selection 1: Open loop vector control (speed sensorless vector) 2: VF Control Tens place: motor type selection 0: Asynchronous motor 1: Synchronous motor	2	\star
P0-04	Run command source	0 : Operation panel running command channel (LED off) 1: Terminal command channel (LED on) 2: Communication command channel (LED flashes)	0	\star

Function code	Name	Description (setting range)	Factory Default	Change
P0-05	UplDown to modify the frequency command reference during runtime	0 : Running frequency 1: Setting frequency	1	\star
P0-06	Main frequency source X selection	0: Up/Down frequency modification, shutdown not remembered 1: Up/Down Modify Frequency Power Failure Memory 2: Ai1 3: Reserved 4: Multi stage speed 5: Simple PLC 6: PID 7: Communication given 8: PULSE pulse setting 9: Up/Down modification frequency, shutdown memory, power-off memory, no memory	1	\star
P0-07	Auxiliary frequency source Y selection	0: Up/Down frequency modification, shutdown not remembered 1: Up/Down Modify Frequency Power Failure Memory 2: Ai1 3: Reserved 4: Multi stage speed 5: Simple PLC 6: PID 7: Communication given 8: PULSE pulse setting 9: Up/Down modification frequency, shutdown memory, power-off memory, no memory	0	\star
P0-08	Auxiliary frequency source Y range selection	0 : relative to the maximum frequency 1: Relative to frequency source X 2: The range is the same as 0 but the main and auxiliary have no negative frequency output	0	

Chapter 8 Function \& Parameter Table

Function code	Name	Description (setting range)	Factory Default	Change
P0-09	Auxiliary frequency source Y range	0\% to 100\%	100\%	A
P0-10	Frequency source selection	Ones place: frequency source selection 0 : Main frequency source X 1: Main and auxiliary operation results (the operation relationship is determined by ten digits) 2: Switch between main frequency source X and auxiliary frequency source Y 3: Switch between the main frequency source X and the main and auxiliary operation results 4: Switch between auxiliary frequency source Y and main and auxiliary operation results Tens place: main and auxiliary operation relationship of frequency source 0: main + auxiliary 1: Primary-Secondary 2: the maximum value of the two 3: the minimum value of the two	00	*
P0-11	Preset frequency	$0.00 \mathrm{~Hz} \sim$ Maximum frequency P0-14	50.00 Hz	E
P0-13	Motor running direction selection	0 : Consistent with the current motor direction 1: Opposite to the current motor direction 2: Inversion is prohibited	0	*
P0-14	Maximum output frequency	When $\mathrm{P} 0-20=1$, the adjustable range is $50.0 \mathrm{~Hz} \sim 1200.0 \mathrm{~Hz}$; When $\mathrm{P} 0-20=2$, the adjustable range is $50.00 \mathrm{~Hz} \sim 600.00 \mathrm{~Hz}$;	50.00 Hz	\star
P0-15	Upper limit frequency source	0: Number given (P0-16) 1: Al1 2: Al2 3: Communication given 4: PULSE setting	0	\star

Function code	Name	Description (setting range)	Factory Default	Change
P0-16	Upper limit frequency	Lower limit frequency P0-18 ~ maximum frequency P0-14	50.00 Hz	N
P0-17	Upper limit frequency offset	0.00 ~ Maximum frequency P0-14	0.00 Hz	2
P0-18	Lower frequency	$0.00 \mathrm{~Hz} \sim$ upper limit frequency P0-16	0.00 Hz	*
P0-19	Command source binding selection	Bit: Operation panel command binding frequency source selection 0 : Unbound 1: Digital setting frequency 2: Ai1 3: Reserved 4: Multi stage speed 5: Simple PLC 6: PID 7: Communication given 8: PULSE pulse setting (Di5) Ten digit: Terminal command binding frequency source selection Hundred bit: Communication command binding frequency source selection Thousand digits: reserved	000	*
P0-20	Frequency Decimal Selection	1: 1 decimal point 2: 2 decimal places	2	\star
P0-21	Acceleration and deceleration time unit	0: 1 second 1: 0.1 seconds 2: 0.01 seconds	1	\star
P0-22	Acceleration and deceleration time reference frequency	0 : Maximum frequency (P0-14) 1: Preset frequency (P0-11) 2: Motor rated frequency (P4-05 or A105)	0	\star
P0-23	Acceleration time 1	$\begin{aligned} & 0 s \sim 30000 \mathrm{~s}(\mathrm{PO} 0-21=0) \\ & 0.0 \mathrm{~s} \sim 3000.0 \mathrm{~s}(\mathrm{PO} 0-21=1) \\ & 0.00 \mathrm{~s} \sim 300.00 \mathrm{~s}(\mathrm{P0} 0-21=2) \end{aligned}$	10.0s	2
P0-24	Deceleration time 1	$\begin{aligned} & 0 s \sim 30000 \mathrm{~s}(\mathrm{P} 0-21=0) \\ & 0.0 \mathrm{~s} \sim 3000.0 \mathrm{~s}(\mathrm{PO} 0-21=1) \\ & 0.00 \mathrm{~s} \sim 300.00 \mathrm{~s}(\mathrm{P} 0-21=2) \end{aligned}$	10.0s	*

Chapter 8 Function \& Parameter Table

Function code	Name	Description (setting range)	Factory Default	Change
P0-25	Overmodulation voltage boost value	0\% ~ 10\%	3\%	\star
P0-26	Carrier frequency	$0.5 \mathrm{kHz} \sim 16.0 \mathrm{kHz}$	Model is determined	*
P0-27	The carrier frequency is adjusted with temperature	0: Invalid; 1: Valid;	1	*
P0-28	Parameter initialization	0: No operation 1: Restore factory parameters, excluding motor parameters, record information and frequency decimal point P0-20 2: Clear record information 3: Backup current user parameters 4: Restore user backup parameters	0	\star
P0-29	Upload to keyboard and download to frequency converter parameter selection	0 : No function 1: Upload parameters 2: Download P4/A1 group parameters 3: Download parameters other than P4/A1 groups 4: Download all parameters 5: Download P4/A1 group modification item parameters 6: Download parameters for modified items except for P4/A1 groups 7: Download all modified parameters	0	H
Group P1: Start-stop control				
P1-00	Start method	0 : Direct start 1: Speed Tracking 2: Asynchronous motor preexcitation start	0	N
P1-01	Speed tracking method	0 : start from stop frequency 1: Start with target frequency 2: start from maximum frequency	0	\star
P1-02	Maximum speed tracking current	30\% ~ 150\%	100\%	\star
P1-03	Speed tracking speed	1~100	20	*

Chapter 8 Function \& Parameter Table

Function code	Name	Description (setting range)	Factory Default	Change
P1-04	Start frequency	$0.00 \mathrm{~Hz} \sim 10.00 \mathrm{~Hz}$	0.00 Hz	A
P1-05	Start frequency hold time	0.0s $\sim 100.0 \mathrm{~s}$	0.0s	\star
P1-06	Start DC braking current	0\% ~ 100\%	0\%	\star
P1-07	Start DC braking time	0.0s~100.0s	0.0s	\star
P1-08	Selection of acceleration and deceleration frequency curve mode	0 : Straight line 1: S curve A 2: S curve B (P1-09~ $\mathrm{P} 1-12$ unit is 0.01 s)	0	\star
P1-09	S-curve acceleration start time	0.0\% ~ 100.0\%	20.0\%	\star
P1-10	S-curve acceleration end time	0.0\% ~ 100.0\%	20.0\%	\star
P1-11	S-curve deceleration start time	0.0\% ~ 100.0\%	20.0\%	\star
P1-12	S-curve deceleration end time	0.0\% ~ 100.0\%	20.0\%	\star
P1-13	Stop mode	0: Decelerate to stop 1: Free stop	0	2
P1-14	DC braking start frequency at stop	$0.00 \mathrm{~Hz} \sim \mathrm{P} 0-14$	0.00 Hz	N
P1-15	DC braking waiting time at stop	0.0s ~ 100.0s	0.0s	A
P1-16	Stop braking DC current	0\% ~ 100\%	0\%	s
P1-17	DC braking time at stop	0.0s $\sim 36.0 \mathrm{~s}$	0.0s	*
P1-21	Demagnetization time	0.01s ~ 3.00 s	0.50s	\star
P1-23	Instantaneous stop and non-stop mode selection	0 : invalid 1: Automatically adjust the deceleration rate 2: Decelerate to stop	0	\star
P1-24	The deceleration time of the momentary stop and non-stop deceleration stop	0.0s~100.0s	10.0s	\star
P1-25	Instantaneous power failure and non-stop effective voltage	60\% ~ 85\%	80\%	\star
P1-26	Instantaneous power failure and non-stop recovery of voltage	85\% ~ 100\%	90\%	\star
P1-27	Instantaneous power failure and non-stop recovery voltage judgment	0.0s ~ 300.0s	0.3 s	\star

Chapter 8 Function \& Parameter Table

Function code	Name	Description (setting range)	Factory Default	Change
P1-28	Instantaneous stop and nonstop automatic gain adjustment	$0 \sim 100$	40	H
P1-29	Instantaneous stop and nonstop automatic adjustment of integral	1~100	20	*
Group P2: V/F control parameters				
P2-00	V/F curve setting	0 : Straight line VF curve 1: Multi-point VF curve 2: Square VF curve 3: 1.7th power curve 4: 1.5 power curve 5: 1.3 power curve 6: VF full separation mode 7: V/F half separation mode	0	\star
P2-01	Torque boost	0.0\% ~ 30.0\%	0.0\%	\%
P2-02	Torque boost cut-off frequency	$0.00 \mathrm{~Hz} \sim$ Maximum frequency	25.00 Hz	\star
P2-03	V/F frequency point P1	$0.00 \mathrm{~Hz} \sim$ P2-05	1.30 Hz	\star
P2-04	V/F voltage point V1	0.0\% ~ 100.0\%	5.2\%	\star
P2-05	V/F frequency point P2	P2-03 ~ P2-07	2.50 Hz	\star
P2-06	V/F voltage point V2	0.0\% ~ 100.0\%	8.8\%	\star
P2-07	V/F frequency point P3	$0.00 \mathrm{~Hz} \sim 50.00 \mathrm{~Hz}$	15.00 Hz	\star
P2-08	V/F voltage point V3	0.0\% ~ 100.0\%	35.0\%	\star
P2-09	Slip Compensation Coefficient	0.0\% ~ 200.0\%	50.0\%	N
P2-10	Flux Brake Gain	$0 \sim 200$	100	*
P2-11	Oscillation suppression gain	0~100	Model is determined	\%
P2-13	VF slip compensation time constant	0.02s ~ 1.00s	0.30s	N
P2-15	Output voltage source selection when VF is separated	0 : Digital setting (P2-14) 1: Al1 2: AI2 3: Multi-segment instruction 4: Simple PLC 5: PID	0	*

Function code	Name	Description （setting range）	Factory Default	Change
P2－15	Output voltage source selection when VF is separated	6：Communication given 7：PULSE pulse setting（Di5） 100.0% corresponds to the rated voltage of the motor	0	2
P2－16	V／F separation output voltage digital setting	OV～Motor rated voltage	OV	匀
P2－17	V／F separation output voltage acceleration time	0．0～3000．0s	1．0s	N
P2－18	V／F separation output voltage deceleration time	0．0～3000．0s	1．0s	2
P2－19	V／F separation and stop mode selection	0 ：Frequency and output voltage deceleration time are independent 1：After the voltage is reduced to 0 ，the frequency is reduced again	0	诼
Group P3：Vector control parameters				
P3－00	Switching frequency P1	$0.00 \sim$ P3－02	5.00 Hz	E
P3－02	Switching frequency P2	P3－00～P0－14	10.00 Hz	该
P3－04	Low frequency speed proportional gain	$0.1 \sim 10.0$	4.0	N
P3－05	Low frequency speed integration time	0．01s～10．00s	0．50s	＊
P3－06	High frequency speed proportional gain	$0.1 \sim 10.0$	2.0	诼
P3－07	High frequency speed integration time	0．01～10．00s	1．00s	N
P3－08	Speed loop integral attribute selection	0 ：Points take effect 1：Integral separation	0	\star
P3－11	Torque current regulator Kp	0～30000	2200	N
P3－12	Torque current regulator Ki	$0 \sim 30000$	1500	N
P3－13	Excitation current regulator Kp	$0 \sim 30000$	2200	N
P3－14	Excitation current regulator Ki	$0 \sim 30000$	1500	该
P3－15	Flux Brake Gain	$0 \sim 200$	0	＊

Chapter 8 Function \& Parameter Table

Function code	Name	Description (setting range)	Factory Default	Change
P3-16	Field weakening torque correction factor	50\% ~ 200\%	100\%	N
P3-17	Slip compensation gain	50\% ~ 200\%	100\%	\%
P3-18	Speed loop feedback filter time constant	0.000~1.000s	0.015s	N
P3-19	Speed loop output filter time constant	0.000 ~ 1.000s	0.000s	A
P3-20	Electric torque upper limit source	0: P3-21 1: Al1 2: AI2 3: Communication given 4: PLUSE given (The analog range corresponds to P3-21)	0	*
P3-21	Electric torque upper limit	0.0\% ~ 200.0\%	150.0\%	N
P3-22	Braking torque upper limit source	0: P3-23 1: Al1 2: Al2 3: Communication given 4: PLUSE given (The analog range corresponds to P3-23)	0	N
P3-23	Braking torque upper limit	0.0 ~ 200.0\%	150.0\%	\pm
P3-24	Low-speed magnetizing current of synchronous motor	0.0\% ~ 50.0\%	25.0\%	\star
P3-25	Magnetizing cut-off frequency of synchronous motor	0\% ~ 100\%	10\%	\star
P3-26	Pre-excitation time	0s $\sim 5 \mathrm{~s}$	0.1s	\star
P3-27	Synchronous motor initial position identification enable selection	0: Disable 1: Identification method 1 2: Identification method 2	1	\star
P3-28	Initial position identification voltage given percentage	30\% ~ 130\%	80\%	*
Group P4: First motor parameter				
P4-00	Motor parameter tuning	0 : no function 1: Static tuning 2: Rotary tuning	0	\star

Function code	Name	Description (setting range)	Factory Default	Change
P4-01	Motor 1 rated power	0.1kw ~ 1000.0kw	Model is determined	\star
P4-02	Motor 1 rated voltage	1V ~ 1500V	380 V	\star
P4-03	Motor 1 Number of motor poles	2 to 64	Model is determined	\bigcirc
P4-04	Motor 1 rated current	$\begin{aligned} & 0.01 \mathrm{~A} \sim 600.00 \mathrm{~A}(\text { Motor } \\ & \text { rated power<=30.0KW) } \\ & 0.1 \mathrm{~A} \sim 6000.0 \mathrm{~A}(\text { Motor rated } \\ & \text { power }>30.0 \mathrm{KW}) \end{aligned}$	P4-01 OK	\star
P4-05	Motor 1 rated frequency	$0.01 \mathrm{~Hz} \sim$ P0-14	50.00 Hz	\star
P4-06	Motor 1 rated speed	Orpm $\sim 60000 \mathrm{rpm}$	P4-01 OK	\star
P4-07	Motor 1 no-load current	$\begin{aligned} & 0.01 \mathrm{~A} \sim \text { P4-04 }(\text { Motor rated } \\ & \text { power<=30.0KW }) \\ & 0.1 \mathrm{~A} \sim \text { P4-04 }(\text { Motor rated } \\ & \text { power>30.0KW }) \end{aligned}$	Model is determined	\star
P4-08	Motor 1 stator resistance	$0.001 \Omega \sim 65.535 \Omega$	Model is determined	\star
P4-09	Motor 1 rotor resistance	$0.001 \Omega \sim 65.535 \Omega$	Model is determined	\star
P4-10	Motor 1 mutual inductance	0.1Mh $\sim 6553.5 \mathrm{Mh}$	Model is determined	\star
P4-11	Motor 1 leakage inductance	0.01Mh~655.35Mh	Model is determined	\star
P4-12	Acceleration at Dynamic Full Tuning	1.0s ~ 6000.0s	10.0s	H
P4-13	Deceleration at dynamic full tuning	1.0s ~ 6000.0s	10.0s	*
P4-17	Synchronous motor stator resistance	$0.001 \Omega \sim 65.535 \Omega$	Model is determined	\star
P4-18	Synchronous motor D-axis inductance	0.01Mh~655.35Mh	Model is determined	\star
P4-19	Synchronous motor Q-axis inductance	0.01Mh $\sim 655.35 \mathrm{Mh}$	Model is determined	\star
P4-20	Synchronous motor back EMF	1V ~ 65535 V	Model is determined	\star
P4-21	No-load current of synchronous motor	0.0\% ~ 50.0\%	10.0\%	\star

Chapter 8 Function \& Parameter Table

Function code	Name	Description (setting range)	Factory Default	Change
		28: Counter input 31: Length count reset 32: Torque control prohibited 33: PULSE (pulse) frequency input 34: Frequency modification prohibited 35: PID action direction is reversed 36: External parking terminal 1 37: Control command switching terminal 2 38: PID integral pause terminal 39: Frequency source X and preset frequency switching terminal 40: Frequency source Y and preset frequency switching terminal 41: Switch between motor 1 and motor 2 42: Reserved 43: PID parameter switching terminal 44: Speed control/torque control switching 45: Emergency stop 46: External parking terminal 2 47: Deceleration DC braking 48: This running time is cleared 49: Two-wire/three-wire switch 50: Inversion prohibited 51: User-defined fault 1 52: User-defined fault 2 53: Sleep Input(Some DI terminals are supported by IO2 cards and IO3 cards)		
P5-10	DI terminal filter time	0.000~1.000s	0.010s	准
P5-11	Terminal command method	0 : Two-wire type 1 1: Two-wire type 2 2: Three-wire type 1 3: Three-wire type 2	0	\star
P5-12	Terminal UP/ DOWN change rate	$0.01 \mathrm{~Hz} / \mathrm{s} \sim 100.00 \mathrm{~Hz} / \mathrm{s}$	1.00Hz/s	*

Chapter 8 Function \＆Parameter Table

Function code	Name	Description （setting range）	Factory Default	Change
P5－13	Terminal valid logic 1	0 ：High level 1：low level Ones place：DI1； Tens place：DI2； Hundreds：DI3； Thousands：DI4； Ten thousand：DI5	00000	\star
P5－15	Al1 minimum input value	0．00V $\sim 10.00 \mathrm{~V}$	0.00 V	＊
P5－16	Al1 minimum input corresponding setting	－100．0\％～100．0\％	0．0\％	＊
P5－17	Al1 maximum input value	0．00V $\sim 10.00 \mathrm{~V}$	10.00 V	H
P5－18	Al1 maximum input corresponding setting	－100．0\％～100．0\％	100．0\％	该
P5－19	Al1 input filter time	0．00s～10．00s	0.10 s	N
P5－20	Al2 minimum input value	$0.00 \mathrm{~V} \sim 10.00 \mathrm{~V}$	0.00 V	令
P5－21	Al2 minimum input corresponding setting	－100．0\％～100．0\％	0．0\％	＊
P5－22	Al2 maximum input value	$0.00 \mathrm{~V} \sim 10.00 \mathrm{~V}$	10.00 V	＊
P5－23	Al2 maximum input corresponding setting	－100．0\％～100．0\％	100．0\％	2
P5－24	Al2 input filter time	0．00s～10．00s	0.10 s	＊
P5－25	Al3 minimum input value	$0.00 \mathrm{~V} \sim 10.00 \mathrm{~V}$	0.00 V	㐫
P5－26	Al3 minimum input corresponding setting	－100．0\％～100．0\％	0．0\％	2
P5－27	Al3 maximum input value	0．00V $\sim 10.00 \mathrm{~V}$	10.00 V	＊
P5－28	Al3 maximum input corresponding setting	－100．0\％～100．0\％	100．0\％	2
P5－29	Al3 input filter time	0．00s ~ 10.00 s	0．10s	ω
P5－30	PULSE（pulse）input minimum frequency	0．00KHz～P5－32	0.00 KHz	2
P5－31	PULSE（pulse）input minimum frequency corresponding setting	－100．0\％～100．0\％	0．0\％	＊

Function code	Name	Description (setting range)	Factory Default	Change
P5-32	PULSE (pulse) input maximum frequency	P5-30~50.00KHz	50.00 KHz	N
P5-33	PULSE (pulse) input maximum frequency corresponding setting	-100.0\% ~ 100.0\%	100.0\%	A
P5-34	PULSE input filter time	0.00s ~ 10.00 s	0.10 s	H
P5-35	DI1 turn-on delay time	0.0s $\sim 3600.0 \mathrm{~s}$	0.0 s	5
P5-36	DI1 off delay time	0.0s $\sim 3600.0 \mathrm{~s}$	0.0s	H
P5-37	DI2 turn-on delay time	0.0s $\sim 3600.0 \mathrm{~s}$	0.0s	*
P5-38	DI2 off delay time	0.0s $\sim 3600.0 \mathrm{~s}$	0.0s	H
P5-39	D13 turn-on delay time	0.0s $\sim 3600.0 \mathrm{~s}$	0.0s	A
P5-40	DI3 off delay time	0.0s ~ 3600.0 s	0.0s	A
P5-41	Al1 is selected as DI terminal function	$0 \sim 53$, the function is the same as the common DI terminal	0	\star
P5-42	Al 2 is selected as DI terminal function	$0 \sim 53$, the function is the same as the common DI terminal	0	\star
P5-44	Valid mode selection when Al is used as DI terminal	Individual bits, Ai1: 0 : Effective at high level, 1: Low level effective Ten, Ai2: 0 : Effective at high level, 1: Low level effective Hundred places: reserved	0x00	H
P5-45	Al curve selection	AI multi-point curve selection: Unit: Ai1 0:2 point straight line P5-15~P5-19 1: Multipoint curve 1: PE-00~PE-07 2: Multipoint curve 2: PE-08 to PE- 15 Top 10: Ai2	0x00	H

Function code	Name	Description (setting range)	Factory Default	Change
		0:2 point straight line P5-20~P5-24 1: Multipoint curve 1: PE-00~PE-07 2: Multipoint curve 2: PE-08 to PE-15 Hundred places: reserved		
Group P6: Output terminal				
P6-00	Control board relay RELAY1 output (TA/TB/TC) selection	0: No output 1: Inverter running signal (RUN) 2: fault output 3: Frequency level detection PDT1 arrival 4: Frequency Arrival (PAR) 5: Running at zero speed 6: Motor overload pre-alarm 7: Inverter overload pre-alarm 8: PLC cycle completed 9: Cumulative running time arrives 10: Frequency limited 11: Ready to run 12: Al1>AI2 13: The upper limit frequency is reached 14: The lower limit frequency is reached 15: Undervoltage status output 16: Communication settingss 17: Timer output 18: Reverse running 19: Reserved 20: Set length reached 21: Torque limited 22: Current 1 arrives 23: Frequency 1 arrives 24: Module temperature reached 25: Dropping 26: Cumulative power-on time arrives 27: Timed arrival output 28: The running time has arrived 29: Set count value reached 30: The specified count value arrives	1	*

Function code	Name	Description (setting range)	Factory Default	Change
		31: Motor 1, Motor 2 indication 32: Brake control output 33: Running at zero speed 2 34: Frequency level detection PDT2 arrival 35: Zero current state 36: Software current overrun 37: The lower limit frequency is reached, and the output is also output when stopped 38: Alarm output 39: Reserved 40: Al1 input overrun 41: Reserved 42: reserved 43: Frequency reached 2 44: Current reaches 2 45: Fault output		
P6-04	Y terminal output mode Select	0: Pulse output (FMP) 1: Open collector switching output (FMR)	0	*
P6-05	FMR output selection	Similar to P6-01 to select the output mode of parameters	0	*
P6-09	AO1 output selection	0 : Operating frequency 1: Set frequency 2: Output current (100% corresponds to twice the rated motor current) 3: Output power (100% corresponds to 2 times the rated motor power)	0	
P6-10	AO2 output selection	1.2 times the rated voltage of the frequency converter) 5: Simulate Al1 input value 6: Simulate AI2 input value 7: Communication settings 8: Output torque		

Function code	Name	Description (setting range)	Factory Default	Change
		9: Length 10: Counting value 11: Motor speed 12: Bus voltage ($0-3$ times the rated voltage of the frequency converter) 13: Pulse input 14: Output current (100% corresponds to 1000.0A) 15: Output voltage (100.0\% corresponds to 1000.0 V) 16: Output torque (actual torque value 2 times rated to 2 times rated)		
P6-11	FMP output selection	0 : Operating frequency 1: Set frequency 2: Output current (100% corresponds to twice the rated motor current) 3: Output power (100% corresponds to 2 times the rated motor power) 4: Output voltage (100% corresponds to 1.2 times the rated voltage of the frequency converter) 5: Simulate Al1 input value 6: Simulate AI2 input value 7: Communication settings 8: Output torque 9: Length 10: Counting value 11: Motor speed 12: Bus voltage (0-3 times the rated voltage of the frequency converter) 13: Pulse input 14: Output current (100% corresponds to 1000.0A) 15: Output voltage (100.0\% corresponds to 1000.0 V) 16: Output torque (actual torque value 2 times rated to 2 times rated)	0	A

Function code	Name	Description (setting range)	Factory Default	Chan ge
P6-12	FMP output maximum frequency	$0.01 \mathrm{KHz} \sim 100.00 \mathrm{KHz}$	50.00	*
P6-13	AO1 output lower limit	-100.0\% ~ P6-15	0.0\%	\star
P6-14	The lower limit corresponds to AO1 output	0.00V ~ 10.00V	0.00 V	H
P6-15	AO1 output upper limit	P6-13 ~ 100.0\%	100.0\%	H
P6-16	The upper limit corresponds to AO1 output	$0.00 \sim 10.00 \mathrm{~V}$	10.00V	*
P6-17	AO2 output lower limit	-100.0\% ~ P6-19	0.0\%	3
P6-18	The lower limit corresponds to AO2 output	0.00V ~ 10.00V	0.00 V	H
P6-19	AO2 output upper limit	P6-17 ~ 100.0\%	100.0\%	\pm
P6-20	The upper limit corresponds to AO2 output	$0.00 \sim 10.00 \mathrm{~V}$	10.00V	*
P6-21	Main relay T pick-up delay	0.0s ~ 3600.0s	0.0s	约
P6-22	Main relay R pick-up delay	0.0s ~ 3600.0s	0.0s	*
P6-23	Y1 high-level output delay	0.0s ~ 3600.0s	0.0s	*
P6-26	Main relay T off delay	0.0s ~ 3600.0 s	0.0s	A
P6-27	Main relay R off delay	0.0s ~ 3600.0s	0.0s	E
P6-28	Y1 low-level output delay	0.0s ~ 3600.0s	0.0s	E
P6-29	Y2 low-level output delay	0.0s ~ 3600.0 s	0.0s	*
Group P7: Accessibility and keyboard display				
P7-00	Jog running frequency	$0.00 \mathrm{~Hz} \sim$ Maximum frequency	6.00 Hz	H
P7-01	Jog acceleration time	0.0s ~ 3000.0 s	10.0s	H

Chapter 8 Function \& Parameter Table

Function code	Name	Description (setting range)	Factory Default	$\begin{gathered} \text { Chan } \\ \text { ge } \end{gathered}$
P7-02	Jog deceleration time	0.0s ~3000.0s	10.0s	\%
P7-03	Acceleration time 2	0.0s $\sim 3000.0 \mathrm{~s}$	10.0s	T
P7-04	Deceleration time 2	0.0s ~ 3000.0s	10.0s	\%
P7-05	Acceleration time 3	0.0s $\sim 3000.0 \mathrm{~s}$	10.0s	3
P7-06	Deceleration time 3	0.0s ~ 3000.0s	10.0s	\cdots
P7-07	Acceleration time 4	0.0s ~3000.0s	10.0s	\%
P7-08	Deceleration time 4	0.0s ~3000.0s	10.0s	H
P7-09	Hop Frequency 1	$0.00 \mathrm{~Hz} \sim$ Maximum frequency	0.00 Hz	S
P7-10	Hop Frequency 1 Amplitude	$0.00 \mathrm{~Hz} \sim$ Maximum frequency	0.00Hz	N
P7-11	Hop Frequency 2	$0.00 \mathrm{~Hz} \sim$ Maximum frequency	0.00 Hz	M
P7-12	Hop Frequency 2 Amplitude	$0.00 \mathrm{~Hz} \sim$ Maximum frequency	0.00Hz	N
P7-15	Forward and reverse dead time	0.0s ~ 3000.0s	0.0s	*
P7-16	Keyboard Knob Accuracy	0 : Default mode 1: 0.1 Hz 2: 0.5 Hz 3: 1 Hz 4: 2 Hz 5: 4Hz 6: 5 Hz 7: 8Hz 8: 10 Hz 9:0.01Hz 10:0.05Hz	2	N
P7-17	The frequency is lower than the lower limit frequency processing	0 : run at the lower frequency limit 1: shutdown 2: Running at zero speed	0	H
P7-18	Sag rate	0.0\% ~ 100.0\%	0.0\%	3
P7-19	Delay time for frequency lower than lower limit shutdown	0.0s ~ 600.0s	0.0s	A
P7-20	Set cumulative operating time	Oh~65000h	Oh	N

Function code	Name	Description (setting range)	Factory Default	Change
P7-21	Jog priority	0 : Invalid 1: Jog priority mode 1 2: Jog priority mode 2 1) When the user fails or the PID is lost, the jog is still valid 2) Stop mode and DC braking can be set	1	*
P7-22	Frequency detection value (PDT1 level)	$0.00 \mathrm{~Hz} \sim$ Maximum frequency	50.00 Hz	2
P7-23	Frequency check hysteresis value (PDT1 hysteresis)	0.0\% ~ 100.0\%	5.0\%	2
P7-24	Frequency arrival detection width	0.0\% ~ 100.0\%	0.0\%	*
P7-25	Reserve	--	0	\bigcirc
P7-26	Fan control	0 : The fan keeps running 1: The fan runs when the inverter is running (When the temperature is higher than 40°, the fan will also run under shutdown)	1	\star
P7-27	STOP/RESET function	0 : Only valid in keyboard control 1: The stop or reset function is valid in all control modes	0	*
P7-28	Quick /JOG key function selection	0: Forward jog 1: Forward and reverse switching 2: Reverse jog 3: Switch between panel and remote control 4: Panel frequency source switching (press the Quick key to change)	0	\star
P7-29	LED running display	0000 ~0xPFPF (hexadecimal number) 0000 to 0xPFPF Bit00: Running frequency 0001 Bit01: Set frequency 0002	0	*

Function code	Name	Description (setting range)	Factory Default	Change
		Bit02: Bus voltage 0004 Bit03: Output voltage 0008 Bit04: Output current 0010 Bit05: Output power 0020 Bit06: DI input status 0040 Bit07: DO output status 0080 Bit08: Al1 voltage 0100 Bit09: Reserved Bit10: PID setting value 0400 Bit11: PID feedback value 0800 Bit12: Count value 1000 Bit13: Length value 2000 Bit14: Load speed display 4000 Bit15: PLC stage 8000		
P7-30	LED stop display	$1 \sim 0 \times 1$ PPF (hexadecimal number) Bit00: Set frequency 0001 Bit01: Bus voltage 0002 Bit02: DI input status 0004 Bit03: DO output status 0008 Bit04: Al1 voltage 0010 Bit05: Reserved Bit06: PID setting value 0040 Bit07: PID feedback value 0080 Bit08: Count value 0100 Bit09: Length value 0200 Bit10: Load speed display 0400 Bit11: PLC stage 0800 Bit12: Input pulse frequency 1000 Bit13 ~ Bit15: Reserved	H. 0043	E
P7-31	Load speed display factor	$0.001 \sim 655.00$	1.000	3
P7-32	Radiator temperature	$12^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C}$	Measured value	\bigcirc
P7-33	Cumulative poweron time	Oh~65535h	Measured value	\bigcirc
P7-34	Cumulative running time	Oh~65535h	Measured value	\bigcirc

Function code	Name	Description (setting range)	Factory Default	Change
P7-36	Current running timing enable selection	$0:$ Disable 1: Enable, When the time is up, a fault is reported 2: Enable, When the time is up, a fault is not reported	0	\star
P7-37	Selection of timing source for the current run	0: Digital setting P7-38 1: Al1 2: AI2(AI is 100% based on P738)	0	\star
P7-38	Current running time set value	0.0min ~ 6500.0min	0.0min	*
P7-39	High level timing	0.0s ~ 6000.0s	2.0s	A
P7-40	low level timing	0.0s ~ 6000.0s	2.0s	*
P7-41	Activate the protection function	0 : Invalid (start terminal command is valid and start directly) 1: Valid	1	2
P7-43	Frequency reaches detection value 1	$0.00 \mathrm{~Hz} \sim \mathrm{PO} 0-14$	50.00 Hz	*
P7-44	Frequency detection value 1 arrival width	0.0\% ~ 100.0\%	0.0\%	*
P7-45	Current reaches detection value 1	0.0\% ~ 300.0\%	100.0\%	*
P7-46	Current detection value 1 arrival width	0.0\% ~ 300.0\%	0.0\%	*
P7-49	user password	$0 \sim 65535$	0	2
P7-50	Whether the jump frequency is valid during acceleration and deceleration	0 : invalid 1: Valid	0	*
P7-51	Set the power-on arrival time	Oh~65530h	Oh	*
P7-53	Acceleration time 1/2 switching frequency point	$0.00 \mathrm{~Hz} \sim$ Maximum frequency (P0-14)	0.00 Hz	*
P7-54	Deceleration time $1 / 2$ switching frequency point	$0.00 \mathrm{~Hz} \sim$ Maximum frequency (P0-14)	0.00 Hz	*

Chapter 8 Function \＆Parameter Table

Function code	Name	Description （setting range）	Factory Default	Change
P7－55	Frequency detection value（PDT2 level）	$0.00 \mathrm{~Hz} \sim$ Maximum frequency (P0-14)	50.00 Hz	A
P7－56	Frequency detection PDT2 hysteresis value	0．0\％～100．0\％	5．0\％	2
P7－57	Frequency reaches detection value 2	$0.00 \mathrm{~Hz} \sim$ Maximum frequency (P0-14)	50.00 Hz	2
P7－58	Frequency arrival detection 2 amplitude	0．0\％～100．0\％	0．0\％	N
P7－59	Zero current detection value	0．0\％～300．0\％	10．0\％	该
P7－60	Zero current detection delay time	0．01s～300．00s	1．00s	2
P7－61	Output current amplitude detection	20．0\％～400．0\％	200．0\％	2
P7－62	Software overcurrent maximum allowable time	0s～6500．0s	0s	该
P7－63	Current reaches detection value 2	20．0\％～300．0\％	100．0\％	该
P7－64	Current arrival detection 2 amplitude	0．0\％～300．0\％	0．0\％	该
P7－65	LED running display parameter 2	$0 \times 0 \sim 0 \times 1 \mathrm{PF}$ Bit00：Target torque\％ 0001 Bit01：Output torque\％ 0002 Bit02：Pulse input pulse frequency（KHz） 0004 Bit03：DI5 high－speed pulse sampling linear speed（ $\mathrm{m} / \mathrm{min}$ ） 0008 Bit04：Motor speed（rmp） 0010 Bit05：AC incoming line current （A） 0020 Bit06：Cumulative running time （h） 0040 Bit07：Current running time（min） 0080 Bit08：Cumulative power consumption（kWh） 0100 Bit09～Bit15：Reserved		

Function code	Name	Description (setting range)	Factory Default	Change
P7-67	Al1 input voltage lower limit	0.00V ~ P7-68	2.00 V	*
P7-68	Al1 input voltage upper limit	P7-67 ~ 11.00V	8.00 V	*
P7-69	Module temperature reached	$0^{\circ} \mathrm{C} \sim 90^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	E
P7-70	Output power display correction factor	$0.001 \sim 3.000$	1.000	A
P7-71	Linear velocity display correction factor	Linear speed=P7-71*Number of HDI pulses sampled per second/PB-07	1.000	该
P7-72	Cumulative power consumption (kWh)	$0 \sim 65535$	Measured value	\bigcirc
P7-73	Performance software version	Performance software version number	\#.\#	\bigcirc
P7-74	Functional software version	Function software version number	\#.\#	-
P7-75	Enhanced function parameter display selection	0 : Hide enhanced function parameter group: A0 ~ A3, B0 ~B5 1: Display enhanced function parameter group: A0 ~ A3, B0 ~B5	0	E
P7-76	Motor speed display correction factor	$0.0010 \sim 3.0000$	1.0000	*
Group P8: Communication parameters				
P8-00	Baud rate setting	0: 300BPS 1: 600BPS 2: 1200BPS 3: 2400BPS 4: 4800BPS 5: 9600BPS 6: 19200BPS 6: 138400BPS	2	诼
P8-01	Data Format	0 : No parity <8,N,2> 1: Even parity <8,E,1> 2: odd parity $\langle 8, \mathrm{O}, 1>$ 3: No parity $1<8, N, 1>$	0	*

Chapter 8 Function \＆Parameter Table

Function code	Name	Description （setting range）	Factory Default	Change
P8－02	Comunication address	$0 \sim 247$（ 0 is the broadcast address）	1	N
P8－03	Response time	$0 \mathrm{~ms} \sim 30 \mathrm{~ms}$	2 ms	\pm
P8－04	Communication timeout	$0 \mathrm{~ms} \sim 30 \mathrm{~ms}$	0．0s	¢
P8－05	Communication format selection	0：Standard ModbusRTU protocol 1：Non－standard ModBusRTU protocol	0	＊
P8－06	Background software monitoring function	0：Disable，default 485 communication function 1：On，the background software monitoring function，the 485 communication function cannot be used at this time	0	N
Group P9：Fault and Protection				
P9－00	Motor overload protection selection	0：Disable 1：Allow	1	＊
P9－01	Motor overload protection gain	0．10～10．00	1.00	准
P9－02	Motor overload warning coefficient（\％）	50\％～100\％	80\％	＊
P9－03	Overvoltage Stall Protection Gain	000～100	030	准
P9－04	Overvoltage stall protection voltage	$200.0 \sim 1200.0 \mathrm{~V}$	760．0V	\star
P9－05	VF Overcurrent Stall Protection Gain	$0 \sim 100$	20	N
P9－06	VF Overcurrent Stall Protection Current	50\％～200\％	150\％	\star
P9－07	VF field weakening area current stall protection factor	50\％～200\％	100\％	\star
P9－08	Overvoltage stall allowable rise limit value	0．0\％～50．0\％	10．0\％	＊
P9－11	Fault automatic reset times	0～20	0	准

Function code	Name	Description (setting range)	Factory Default	Change
P9-12	Fault relay action selection during automatic fault reset	0 : no action 1: Action	0	H
P9-13	Fault automatic reset interval time	0.1s~100.0s	1.0s	2
P9-14	Input phase loss enable selection	0 : invalid 1: Valid	1	N
P9-15	Output phase loss enable selection	0 : invalid 1: Valid	1	*
P9-16	Power-on to ground short-circuit protection selection	0 : invalid 1: Valid	1	2
P9-17	Undervoltage fault automatic reset selection	0 : Manual reset is required after undervoltage fault 1: After the undervoltage fault, the fault will be reset by itself according to the bus voltage	0	*
P9-18	Overvoltage suppression mode selection	0 : invalid 1: Overvoltage suppression mode 1 2: Overvoltage suppression mode 2	1	\star
P9-19	Overexcitation active state selection	0 : invalid 1: Only the deceleration process is valid 2: The constant speed and deceleration process is valid during running	2	\star
P9-20	Overvoltage suppression mode 2 limit value	1.0\% ~ 150.0\%	10.00\%	\star
P9-22	Fault protection action 1	$0 \sim 22202$ Units place: Motor overload - Err14 0: Free parking 1: stop according to the stop mode 2: keep running Ten: reserved Hundreds place: input phase lossErr23	00000	2

Chapter 8 Function \& Parameter Table

Function code	Name	Description (setting range)	Factory Default	Change
		Thousands place: output phase loss-Err24 Ten thousand: parameter read and write exception - Err25		
P9-23	Fault protection action 2	$0 \text { ~ 22222; }$ Ones place: Communication failure - Err27 0 : Free parking 1: stop according to the stop mode 2: keep running Tens place: External fault - Err28 Hundreds place: excessive speed deviation fault - Err29 Thousands: User-defined fault 1-Err30 Ten thousand: user-defined fault 2-Err31	00000	*
P9-24	Fault protection action 3	$0 \text { ~ 22222; }$ Ones place: PID feedback lost during runtime - Err32 0 : Free parking 1: stop according to the stop mode 2: keep running Tens place: load loss fault - Err34 Hundreds place: software overcurrent - Err16 Thousands place: The current continuous running time reaches -Err39 Ten thousand: the running time reaches Err40	00000	准
P9-26	Continue to run frequency selection in case of failure	0 : Run at the current operating frequency 1: Run at the set frequency 2: Run at the upper limit frequency 3: Run at the lower frequency limit 4: Run at the standby frequency setting value P9-27	1	氺
P9-27	Abnormal standby frequency set	0.0\% ~ 100.0\%	100\%	N
P9-28	Drop load protection option	0 : invalid 1: Valid	0	N
P9-29	Drop load detection level	0.0\% ~ 80.0\%	20.0\%	\star

Function code	Name	Description (setting range)	Factory Default	Change
P9-30	Load drop detection time	0.0s $\sim 100.0 \mathrm{~s}$	5.0s	\%
P9-31	Excessive speed deviation detection value	0.0\% ~ 100.0\%	20.0\%	E
P9-32	Excessive speed deviation detection time	0.0s ~ 100.0s	0.0s	*
P9-33	Overspeed detection value	0.0\% ~ 100.0\%	20.0\%	H
P9-34	Overspeed detection time	0.0s ~ 100.0s	2.0s	N
P9-35	Motor overload protection current coefficient	100\% ~ 200\%	100\%	氺
Group PA: PID function				
PA-00	PID setting source	0: PID function code PA-01 1: Al1 2: Al2 3: Communication given 4: PULSE given 5: Multi segment instruction given 6: Up/Down modification PA-01 (effective when P0-06=6)	0	N
PA-01	PID digital setting	0.0~100.0\%	50.0\%	N
PA-02	PID given change time	0.00s ~ 650.00 s	0.00s	*
PA-03	PID feedback source	$\begin{aligned} & \text { 0: Al1 } \\ & \text { 1: Al2 } \\ & \text { 2: Al1-Al2 } \\ & \text { 3: communication given } \\ & \text { 4: PULSE is set } \\ & \text { 5: AI1+AI2 } \\ & \text { 6: MAX(\|AI1\|,\|AI2\|) } \\ & \text { 7: } \operatorname{MIN}(\|A\| 1\|,\|A\| 2\|) \end{aligned}$	0	氺
PA-04	PID action direction	0: Forward action 1: Reverse action	0	E
PA-05	PID setting feedback range	$0 \sim 65535$	1000	N
PA-06	Proportional gain P	$0.0 \sim 100.0$	20.0	*

Chapter 8 Function \& Parameter Table

Function code	Name	Description (setting range)	Factory Default	Change
PA-07	Integral time I	0.01s ~ 10.00s	2.00s	H
PA-08	Differential time D	0.000s ~ 10.000s	0.000s	*
PA-09	PID reverse cutoff frequency	0.00 ~Maximum frequency (P0-14)	0.00Hz	诼
PA-10	Deviation limit	0.0\% ~ 100.0\%	0.0\%)
PA-11	Differential clipping	0.00\% ~ 100.00\%	0.0\%	*
PA-12	PID feedback filter time	0.00~60.00s	0.00s	\pm
PA-13	PID feedback loss detection value	0.00~60.00s	0.00s	*
PA-14	PID feedback loss detection time	0.0s~3600.0s	0s	A
PA-18	Proportional gain P2	$0.0 \sim 100.0$	20.0	*
PA-19	Integration time I2	0.01s ~ 10.00 s	2.00s	*
PA-20	Differential time D2	0.000s ~ 10.000 s	0.000s	\pm
PA-21	PID parameter switching conditions	0: Do not switch 1: DI terminal 2: Automatically switch according to the deviation	0	N
PA-22	PID parameter switching deviation 1	0.0\% ~ PA-23	20.0\%	\%
PA-23	PID parameter switching deviation 2	PA-22 ~ 100.0\%	80.0\%	
PA-24	PID initial value	0.0\% ~ 100.0\%	0.0\%	\pm
PA-25	PID initial value hold time	0.00s ~650.00s	0.00s	*
PA-26	Twice output deviation positive maximum value	0.00\% ~ 100.00\%	1.00\%	准
PA-27	Twice output deviation reverse maximum value	0.00\% ~ 100.00\%	1.00\%	*

Function code	Name	Description (setting range)	Factory Default	Change
PA-28	PID integral properties	Units: Integral separation 0: invalid; 1: Valid Tens place: output to the limit value, whether to stop integration 0 : Continue points; 1: Stop integration	00	N
PA-29	PID shutdown operation	0 : stop and do not operate 1: Compute at stop	0	*
Group Pb: Swing Frequency, Fixed Length and Count				
$\mathrm{Pb}-00$	Swing setting method	0 : Relative to the central frequency 1: Relative to the maximum frequency	0	*
$\mathrm{Pb}-01$	Swing frequency amplitude	0.0\% ~ 100.0\%	0.0\%)
$\mathrm{Pb}-02$	Jump frequency amplitude	0.0\% ~ 50.0\%	0.0\%)
$\mathrm{Pb}-03$	Swing frequency cycle	0.1s ~3000.0s	10.0s	A
$\mathrm{Pb}-04$	Triangular wave rising time coefficient	0.1\% ~ 100.0\%	50.0\%	*
Pb-05	Set length	Om~65535m	1000m	A
$\mathrm{Pb}-06$	Actual length	0m~65535m	Om	H
Pb-07	Number of pulses per meter	$0.1 \sim 6553.5$	100.0	*
$\mathrm{Pb}-08$	Set count value	1~65535	1000	A
Pb-09	Designated count value	1~65535	1000	N
Group PC: Multi-segment instruction and simple PLC function				
PC-00	Multi-speed 0	-100.0\% ~ 100.0\%	0.0\%	A
PC-01	Multi-speed 1	-100.0\% ~ 100.0\%	0.0\%	N
PC-02	Multi-speed 2	-100.0\% ~ 100.0\%	0.0\%	*
PC-03	Multi-speed 3	-100.0\% ~ 100.0\%	0.0\%	A
PC-04	Multi-speed 4	-100.0\% ~ 100.0\%	0.0\%	H

Chapter 8 Function \& Parameter Table

Function code	Name	Description (setting range)	Factory Default	Change
PC-05	Multi-speed 5	-100.0\% ~ 100.0\%	0.0\%	\%
PC-06	Multi-speed 6	-100.0\% ~ 100.0\%	0.0\%	E
PC-07	Multi-speed 7	-100.0\% ~ 100.0\%	0.0\%	*
PC-08	Multi-speed 8	-100.0\% ~ 100.0\%	0.0\%	*
PC-09	Multi-speed 9	-100.0\% ~ 100.0\%	0.0\%	*
PC-10	Multi-speed 10	-100.0\% ~ 100.0\%	0.0\%	*
PC-11	Multi-speed 11	-100.0\% ~ 100.0\%	0.0\%	H
PC-12	Multi-speed 12	-100.0\% ~ 100.0\%	0.0\%	N
PC-13	Multi-speed 13	-100.0\% ~ 100.0\%	0.0\%	A
PC-14	Multi-speed 14	-100.0\% ~ 100.0\%	0.0\%	A
PC-15	Multi-speed 15	-100.0\% ~ 100.0\%	0.0\%	H
PC-16	PLC operation mode	0 : Stop at the end of a single operation 1: Hold the final value for a single run 2: keep looping	0	2
PC-17	PLC power-down memory selection	0 : No memory when power off and no memory when stopped 1: Memory when power off and no memory when stopped 2: No memory when power off and memory when shut down 3: Power-down memory and shutdown memory	0	H
PC-18	Running time of simple PLC multi-speed 0	0.0s(h) ~ 6500.0s(h)	0.0s(h)	\%
PC-19	Acceleration/deceleration time of simple PLC multispeed 0	0~3	0	2
PC-20	Running time of simple PLC multi-speed 1	0.0s(h) ~ 6500.0s(h)	0.0s(h)	\%
PC-21	Acceleration/deceleration time of simple PLC multispeed 1	0~3	0	2

Function code	Name	Description (setting range)	Factory Default	Change
PC-22	Running time of simple PLC multi-speed 2	0.0s(h) ~ 6500.0s(h)	0.0s(h)	*
PC-23	Acceleration/deceleration time of simple PLC multispeed 2	0~3	0	23
PC-24	Running time of simple PLC multi-speed 3	0.0s(h) ~ 6500.0s(h)	0.0s(h)	*
PC-25	Acceleration/deceleration time of simple PLC multispeed 3	0~3	0	*
PC-26	Running time of simple PLC multi-speed 4	0.0s(h) ~ 6500.0s(h)	0.0s(h)	*
PC-27	Acceleration/deceleration time of simple PLC multispeed 4	0~3	0	N
PC-28	Running time of simple PLC multi-speed 5	0.0s(h) ~ 6500.0s(h)	0.0s(h)	\%
PC-29	Acceleration/deceleration time of simple PLC multispeed 5	0~3	0	*
PC-30	Running time of simple PLC multi-speed 6	0.0s(h) ~ 6500.0s(h)	0.0s(h)	2
PC-31	Acceleration/deceleration time of simple PLC multispeed 6	0~3	0	2
PC-32	Running time of simple PLC multi-speed 7	0.0s(h) ~ 6500.0s(h)	0.0s(h)	\%
PC-33	Acceleration/deceleration time of simple PLC multispeed 7	0~3	0	*
PC-34	Running time of simple PLC multi-speed 8	0.0s(h) ~ 6500.0s(h)	0.0s(h)	*
PC-35	Acceleration/deceleration time of simple PLC multispeed 8	0~3	0	N

Chapter 8 Function \＆Parameter Table

Function code	Name	Description （setting range）	Factory Default	Change
PC－36	Running time of simple PLC multi－speed 9	0．0s（h）～6500．0s（h）	0．0s（h）	23
PC－37	Acceleration／deceleration time of simple PLC multi－ speed 9	0～3	0	氺
PC－38	Running time of simple PLC multi－speed 10	0．0s（h）～6500．0s（h）	0．0s（h）	＊
PC－39	Acceleration／deceleration time of simple PLC multi－ speed 10	$0 \sim 3$	0	＊
PC－40	Running time of simple PLC multi－speed 11	0．0s（h）～6500．0s（h）	0．0s（h）	＊
PC－41	Acceleration／deceleration time of simple PLC multi－ speed 11	0～3	0	23
PC－42	Running time of simple PLC multi－speed 12	0．0s（h）～6500．0s（h）	0．0s（h）	＊
PC－43	Acceleration／deceleration time of simple PLC multi－ speed 12	0～3	0	该
PC－44	Acceleration／deceleration time of simple PLC multi－ speed 13	$0.0 \sim 6500.0$	0	\pm
PC－45	Running time of simple PLC multi－speed 14	0～3（respectively representing acceleration and deceleration time 1～4）	0．0s（h）	该
PC－46	Acceleration／deceleration time of simple PLC multi－ speed 14	$0.0 \sim 6500.0$	0	H
PC－47	Running time of simple PLC multi－speed 15	0～3（respectively representing acceleration and deceleration time 1～4）	0．0s（h）	A
PC－48	Acceleration／deceleration time of simple PLC multi－ speed 15	$0.0 \sim 6500.0$	0	该

| $\begin{array}{c}\text { Function } \\ \text { code }\end{array}$ | Name | $\begin{array}{c}\text { Description } \\ \text { (setting range) }\end{array}$ | $\begin{array}{c}\text { Factory } \\ \text { Default }\end{array}$ | Change |
| :--- | :--- | :--- | :---: | :---: |$\}$

Chapter 8 Function \& Parameter Table

Function code	Name	Description (setting range)	Factory Default	Change
PD-01	Torque digital given	-200.0\% ~ 200.0\%	150.0\%	\%
PD-03	Torque control positive direction maximum frequency	$0.00 \mathrm{~Hz} \sim$ Maximum frequency (P0-14)	50.00 Hz	H
PD-04	Torque control reverse direction maximum frequency	$0.00 \mathrm{~Hz} \sim$ Maximum frequency (P0-14)	50.00 Hz	*
PD-06	Torque command filter time	0.00s ~ 10.00s	0.00s	3
PD-07	Torque mode frequency acceleration time	0.0s ~ 1000.0s	10.0s	*
PD-08	Torque mode frequency deceleration time	0.0s ~ 1000.0s	10.0s	\%
PD-10	Speed/torque mode selection	0 : Speed mode 1: Torque mode	0	\star
Group PE: AI multi-point curve setting				
PE-00	Curve 1 minimum input	-10.00V ~ PE-02	0.00V	*
PE-01	Curve 1 minimum input corresponding setting	-100.0\% ~ 100.0\%	0.0\%	氺
PE-02	Curve 1 Knee 1 Input	PE-00 ~ PE-04	3.00 V	
PE-03	Curve 1 inflection point 1 input corresponding setting	-100.0\% ~ 100.0\%	30.0\%	H
PE-04	Curve 1 Knee 2 Input	PE-02 ~ PE-06	6.00 V	3
PE-05	Curve 1 inflection point 2 input corresponding setting	-100.0\% ~ 100.0\%	60.0\%	匀
PE-06	Curve 1 maximum input	PE-04 ~ 10.00	10.00V	S
PE-07	Curve 1 maximum input corresponding setting	-100.0\% ~ 100.0\%	100.0\%	*
PE-08	Curve 2 minimum input	-10.00 ~ PE-10	0.00V	3
PE-09	Curve 2 minimum input corresponding setting	-100.0\% ~ 100.0\%	0.0\%	*
PE-10	Curve 2 Knee 1 Input	PE-08 ~ PE-12	3.00 V	*
PE-11	Curve 2 inflection point 1 input corresponding setting	-100.0\% ~ 100.0\%	30.0\%	*

Function code	Name	Description (setting range)	Factory Default	Change
PE-12	Curve 2 Knee 2 Input	PE-10 ~ PE-14	6.00 V	H
PE-13	Curve 2 inflection point 2 input corresponding setting	-100.0\% ~ 100.0\%	60.0\%	咬
PE-14	Curve 2 maximum input	PE-12 ~ 10.00V	10.00 V	*
PE-15	Curve 2 maximum input corresponding setting	-100.0\% ~ 100.0\%	100.0\%	咬
PE-24	Al1 set jump point	-100.0\% ~ 100.0\%	0.0\%	H
PE-25	Al1 sets the jump range	0.0\% ~ 100.0\%	0.5\%	N
PE-26	Al2 set jump point	-100.0\% ~ 100.0\%	0.0\%	A
PE-27	Al2 sets the jump range	0.0\% ~ 100.0\%	0.5\%)
Group PF: Manufacturer parameters				
PF. 00	Factory password	$0 \sim 65535$	*****	*
Group A0: Second motor parameter setting				
A0-00	Motor selection	1: Motor No. 1 2: Motor No. 2	1	\star
A1-01	Motor 2 rated power	$0.1 \mathrm{Kw} \sim 1000.0 \mathrm{Kw}$	Model is determined	\star
A1-02	Motor 2 rated voltage	1 V ~ 1500V	380 V	\star
A1-03	Motor 2 Number of motor poles	2 to 64	Model is determined	\bigcirc
A1-04	Motor 2 rated current	$\begin{aligned} & 0.01 \mathrm{~A} \sim 600.00 \mathrm{~A}(\text { Motor } \\ & \text { rated power<=30.0KW) } \\ & 0.1 \mathrm{~A} \sim 6000.0 \mathrm{~A}(\text { Motor rated } \\ & \text { power }>30.0 \mathrm{KW}) \end{aligned}$	A1-01 OK	\star
A1-05	Motor 2 rated frequency	$0.01 \mathrm{~Hz} \sim$ Maximum frequency (P0-14)	50.00 Hz	\star
A1-06	Motor 2 rated speed	$1 \mathrm{rpm} \sim 65535 \mathrm{rpm}$	A1-01 OK	\star
A1-07	Motor 2 no-load current	$\begin{aligned} & 0.01 \mathrm{~A} \sim \mathrm{~A} 1-04(\text { Motor rated } \\ & \text { power<=30.0KW }) \\ & 0.1 \mathrm{~A} \sim \mathrm{~A} 1-04(\text { Motor rated } \\ & \text { power>30.0KW }) \end{aligned}$	A1-01 OK	\star
A1-08	Motor 2 stator resistance	0.001ohm ~ 65.535ohm	Model is determined	\star

Chapter 8 Function \& Parameter Table

Function code	Name	Description (setting range)	Factory Default	Change
A1-09	Motor 2 rotor resistance	0.001ohm $\sim 65.535 \mathrm{ohm}$	Model is determined	\star
A1-10	Motor 2 mutual inductance	$0.1 \mathrm{mH} \sim 6553.5 \mathrm{mH}$	Model is determined	\star
A1-11	Motor 2 leakage inductance	$0.01 \mathrm{mH} \sim 655.35 \mathrm{mH}$	Model is determined	\star
A1-12	Acceleration at Dynamic Full Tuning	1.0s ~ 6000.0s	10.0s	*
A1-13	Deceleration at dynamic full tuning	1.0s ~ 6000.0s	10.0s	*
Group A2: Second motor VF parameter setting				
A2-00	Torque boost	0.0\% ~ 30.0\%	0.0\%	N
A2-01	Oscillation suppression gain	0~100	Model is determined	H
Group A3: Second motor vector control parameters				
A3-00	Switching frequency P1	$0.00 \mathrm{~Hz} \sim$ A3-02	5.00 Hz	A
A3-02	Switching frequency P2	A3-00 ~ P0-14	10.00 Hz	A
A3-04	Low frequency speed proportional gain	$0.1 \sim 10.0$	4.0	2
A3-05	Low frequency speed integration time	0.01s ~ 10.00s	0.50s	2
A3-06	High frequency speed proportional gain	$0.1 \sim 10.0$	2.0	\%
A3-07	High frequency speed integration time	0.01s ~ 10.00s	1.00s	2
A3-08	Speed loop integral attribute selection	0 : Points take effect 1: Integral separation	0	\star
A3-11	Torque current regulator Kp	$0 \sim 30000$	2000	A
A3-12	Torque current regulator Ki	$0 \sim 30000$	1300	N
A3-13	Excitation current regulator Kp	$0 \sim 30000$	2000	N
A3-14	Excitation current regulator Ki	$0 \sim 30000$	1300	\%
A3-15	Flux Brake Gain	0~200	0	\pm

Function code	Name	Description （setting range）	Factory Default	Change
A3－16	Field weakening torque correction factor	50\％～200\％	100\％	N
A3－17	Slip Compensation Coefficient	50\％～200\％	100\％	N
A3－18	Speed loop feedback filter time constant	0．000s～1．000s	0．015s	＊
A3－19	Speed loop output filter time constant	0．000s～1．000s	0．000s	准
A3－20	Electric torque upper limit source	0：P3－21 2：Ai2 1：Al1（analog range corresponds to P3－21） 3：Communication given 4：PLUSE Given	0	N
A3－21	Electric torque upper limit	0．0\％～200．0\％	150．0\％	准
A3－22	Braking torque upper limit source	0：P3－23 2：Al2 1：Al1（analog range corresponds to P3－23） 3：Communication given 4：PLUSE Given	0	H
A3－23	Braking torque upper limit	0．0\％～200．0\％	150\％	H
Group B0：System parameters				
B0－00	Function code read－only selection	0 ：Invalid 1：Read only	0	N
B0－01	LCD top menu display／LED second line display	0 ：Output current 1：Motor speed 2：Load speed 3：Output voltage 4：PID given 5：PID feedback	0	准
B0－02	LCD language selection	0 ：Chinese 1：English	0	\bigcirc
B0－03	LED menu toggle selection	0 ：Disable 1：enable	0	N

Chapter 8 Function \& Parameter Table

Function code	Name	Description (setting range)	Factory Default	Change
B0-04	Vector operating frequency display selection	0 : real-time frequency 1: set frequency	0	N
B0-05	Display selection during UP/Down adjustment	0 : Display the set value 1: Display the current variable value	0	E
Group B1: User function code customization				
B1-00	Clear custom function code selection	0 : invalid 1: Valid	0	*
B1-01	Custom function code 1	uP0-00 ~ uU1-xx	uP0-03	3
B1-02	Custom function code 2	uP0-00 ~ uU1-xx	uP0-04	*
B1-03	Custom function code 3	uP0-00 ~ uU1-xx	uP0-06	E
B1-04	Custom function code 4	uP0-00 ~ uU1-xx	uP0-23	*
B1-05	Custom function code 5	uP0-00 ~ uU1-xx	uP0-24	*
B1-06	Custom function code 6	uP0-00 ~ uU1-xx	uP4-00	*
B1-07	Custom function code 7	uP0-00 ~ uU1-xx	uP4-01	*
B1-08	Custom function code 8	uP0-00 ~ uU1-xx	uP4-02	*
B1-09	Custom function code 9	uP0-00 ~ uU1-xx	uP4-04	*
B1-10	Custom function code 10	uP0-00 ~ uU1-xx	uP4-05	*
B1-11	Custom function code 11	uP0-00 ~ uU1-xx	uP4-06	\pm
B1-12	Custom function code 12	uP0-00 ~ uU1-xx	uP4-12	¢
B1-13	Custom function code 13	uP0-00 ~ uU1-xx	uP4-13	*
B1-14	Custom function code 14	uP0-00 ~ uU1-xx	uP5-00	¢
B1-15	Custom function code 15	uP0-00 ~ uU1-xx	uP5-01	\%
B1-16	Custom function code 16	uP0-00 ~ uU1-xx	uP5-02	\%
B1-17	Custom function code 17	uP0-00 ~ uU1-xx	uP6-00	\%
B1-18	Custom function code 18	uP0-00 ~ uU1-xx	uP6-01	\%
B1-19	Custom function code 19	uP0-00 ~ uU1-xx	uP0-00	¢
B1-20	Custom function code 20	uP0-00 ~ uU1-xx	uP0-00	*

Function code	Name	Description (setting range)	Factory Default	Change
B1-21	Custom function code 21	uP0-00 ~ uU1-xx	uP0-00	E
B1-22	Custom function code 22	uP0-00 ~ uU1-xx	uP0-00	3
B1-23	Custom function code 23	uP0-00 ~ uU1-xx	uP0-00	H
B1-24	Custom function code 24	uP0-00 ~ uU1-xx	uP0-00	3
B1-25	Custom function code 25	uP0-00 ~ uU1-xx	uP0-00	E
B1-26	Custom function code 26	uP0-00 ~ uU1-xx	uP0-00	5
B1-27	Custom function code 27	uP0-00 ~ uU1-xx	uP0-00	H
B1-28	Custom function code 28	uP0-00 ~ uU1-xx	uP0-00	\%
B1-29	Custom function code 29	uP0-00 ~ uU1-xx	uP0-00	E
B1-30	Custom function code 30	uP0-00 ~ uU1-xx	uP0-00	E
B1-31	Custom function code 31	uP0-00 ~ uU1-xx	uP0-00	H
Group B2: Optimize control parameters				
B2-00	Dead Time Compensation Enable Selection	0 : No compensation 1: Compensation	1	N
B2-01	PWM method	0 : Asynchronous modulation 1: Synchronous modulation	0	*
B2-02	PWM seven-segment/fivesegment selection	0: 7 segments in the whole process 1: Seven-segment/fivesegment automatic switching	0	*
B2-03	$C B C$ current limit enable selection	0: Disable 1: enable	1	*
B2-04	Braking point	$330.0 \mathrm{~V} \sim 1200.0 \mathrm{~V}$	$\begin{aligned} & 360.0 \mathrm{~V} \\ & 690.0 \mathrm{~V} \end{aligned}$	*
B2-05	Undervoltage point	$150.0 \mathrm{~V} \sim 500.0 \mathrm{~V}$	$\begin{aligned} & 200.0 \mathrm{~V} \\ & 350.0 \mathrm{~V} \end{aligned}$	N
B2-06	Random PWM depth setting	$0 \sim 6$	0	*

Chapter 8 Function \& Parameter Table

Function code	Description (setting range)	Factory Default	Change	
B2-07	OHz operating mode selection	0: No current output; 1: Normal operation; 2: Output with stop DC braking current P1-16;	0	zu
B2-08	0: limit mode 0 Low frequency carrier limitation mode selection 2: Unlimited Mode 1 (the carrier of all frequency bands is the same)	0	is	

Group B3: AIAO correction parameters

B3-00	Al1 shows voltage 1	-9.999V ~ 10.000V	3.000 V	3
B3-01	Al1 measured voltage 1	-9.999V ~ 10.000V	3.000 V	\%
B3-02	Al1 shows voltage 2	-9.999V ~ 10.000V	8.000 V	¢
B3-03	Al1 measured voltage 2	-9.999V ~ 10.000V	8.000 V	A
B3-04	Al2 shows voltage 1	-9.999V ~ 10.000V	3.000 V	*
B3-05	Al2 measured voltage 1	-9.999V ~ 10.000V	3.000 V	N
B3-06	Al2 shows voltage 2	-9.999V ~ 10.000V	8.000 V	*
B3-07	Al2 measured voltage 2	-9.999V ~ 10.000V	8.000 V	N
B3-12	AO1 target voltage 1	-9.999V ~ 10.000V	3.000 V	N
B3-13	AO1 measured voltage 1	-9.999V ~ 10.000V	3.000 V	*
B3-14	AO1 target voltage 2	-9.999V ~ 10.000V	8.000 V	*
B3-15	AO1 measured voltage 2	-9.999V ~ 10.000V	8.000 V	*
B3-16	AO2 target voltage 1	-9.999V ~ 10.000V	3.000 V	is
B3-17	AO2 measured voltage 1	-9.999V ~ 10.000V	3.000 V	is
B3-18	AO2 target voltage 2	$-9.999 \mathrm{~V} \sim 10.000 \mathrm{~V}$	8.000 V	is
B3-19	AO21 measured voltage 2	-9.999V ~ 10.000V	8.000 V	is

Group B4: Master-slave control parameters

B4-00	Master-slave control enable selection:	0: Disable 1: Enable	0	\star
B4-01	Master-slave selection:	0: Host 1: Slave	0	\star

Function code	Name	Description (setting range)	Factory Default	Change
B4-02	Host sending frequency selection:	0 : Running frequency 1: Target frequency	0	\star
B4-03	Slave follow master command source selection	0: Do not follow 1: Follow	0	\star
B4-04	Slave receive frequency coefficient	0.00\% ~ 600.00\%	100.00\%	23
B4-05	Slave receives torque coefficient	-10.00 ~ 10.00	1.00	*
B4-06	Slave receives torque bias	-50.00\% ~ 50.00\%	0.00\%	\%
B4-07	Frequency deviation threshold	0.20\% ~ 10.00\%	0.50\%	\pm
B4-08	Master-slave communication drop detection time	0.00s ~ 10.0s	0.1s	该
Group B5: Brake function parameters				
B5-00	Brake control enable selection:	0 : Disable 1: Enable	0	\star
B5-01	brake release frequency	$0.00 \mathrm{~Hz} \sim 20.00 \mathrm{~Hz}$	2.50 Hz	\star
B5-02	Brake release frequency maintenance time	0.0s ~ 20.0s	1.0s	\star
B5-03	Current limit value during holding brake	50.0\% ~ 200.0\%	120.0\%	\star
B5-04	Brake pull-in frequency	$0.00 \mathrm{~Hz} \sim 20.00 \mathrm{~Hz}$	1.50 Hz	\star
B5-05	Brake pull-in delay time	0.0s $\sim 20.0 \mathrm{~s}$	0.0s	\star
B5-06	Holding time of brake pull-in frequency	0.0s ~ 20.0s	1.0s	\star
Group B6: Sleep wakeup function parameters				
B6-00	Hibernate selection	0 : The sleep function is invalid 1: Digital input terminal DI controls sleep function 2: Sleep function controlled by PID set value and feedback value 3: Control sleep function based on operating frequency	0	A

Chapter 8 Function \& Parameter Table

Function code	Name	Description (setting range)	Factory Default	Change
B6-01	Sleep frequency	$0.00 \mathrm{~Hz} \sim \mathrm{P} 0-14$	0.00 Hz	\%
B6-02	Sleep delay	0.0s ~ 3600.0 s	20.0s	*
B6-03	Wake-up difference	$0.0 \% \sim 100.0 \%$ When $B 6-00=3$, the unit becomes Hz	10.0\%	*
B6-04	Wake up delay	0.0s ~ 3600.0 s	0.5 s	3
B6-05	Sleep delay frequency output selection	0 : PID automatic adjustment 1: Sleep frequency B6-01	0	3
Group U0: Fault logging parameters				
U0-00	Last failure type	00: No fault Err01: Inverter module protection Err04: Overcurrent during acceleration Err05: Overcurrent during deceleration Err06: Overcurrent during constant speed operation Err08: Overvoltage during	1	\bigcirc
U0-01	Last failure type	Err09: Overvoltage during deceleration Err10: Overvoltage during constant speed operation Err12: Undervoltage fault Err13: Drive overload fault Err14: Motor overload fault Err15: Drive overheated	1	\bigcirc
U0-02	Types of first and second faults	Err20: Short circuit fault to ground Err23: Input phase loss fault Err24: output phase loss fault Err25: Eeprom operation failure Err27: Communication failure Err28: External fault Err29: The speed deviation is too large Err30: User-defined fault 1	1	\bigcirc

Chapter 8 Function \& Parameter Table

Function code	Name	Description (setting range)	Smallest unit	Change
		Err31: User-defined fault 2		
		Err33: Fast current limiting	Err34: load drop fault	
		Err32: PID feedback lost during runtime		
		Err35: Input power failure		
		Err37: parameter storage exception		
		Err39: The running time has arrived		
		Err40: Cumulative running time reached		
		Err42: Switch the motor during operation		
		Err46: Master-slave control		
communication dropped				

Function code	Name	Smallest unit	Change
U0-03	Frequency of last failure	0.01 Hz	\bigcirc
U0-04	Current at last fault	0.01 A	-
U0-05	Bus voltage at last fault	0.1 V	\bigcirc
U0-06	Input terminal status at the last fault	1	\bigcirc
U0-07	Output terminal status at the last fault	1	\bigcirc
U0-08	Last fault inverter status	1	-
U0-09	Running time at the last fault (starting time after power-on, minutes)	1 min	\bigcirc
U0-10	Running time at the last failure (time from running time, minutes)	1min	\bigcirc
U0-13	Frequency at last failure	0.01 Hz	\bigcirc
U0-14	Current at previous fault	0.01 A	\bigcirc
U0-15	Bus voltage at previous fault	0.1 V	\bigcirc
U0-16	Input terminal at the previous fault	1	-
U0-17	Output terminal when the previous fault	1	\bigcirc
U0-18	Last fault inverter status	1	\bigcirc

Chapter 8 Function \& Parameter Table

Function code	Name	Smallest unit	Change
U0-19	The running time of the previous fault (start timing after power-on, minutes)	1 min	\bigcirc
U0-20	Time of last failure (timed from runtime, minutes)	1 min	\bigcirc
U0-21	reserved variable	--	-
U0-22	reserved variable	-	-
U0-23	The frequency of the first and second faults	0.01 Hz	\bigcirc
U0-24	Current at the first and second fauls	0.01A	-
U0-25	Bus voltage at the first and second faults	0.1 V	\bigcirc
U0-26	Input terminal for the first and second faults	1	-
U0-27	Output terminal when the first and second faults	1	-
U0-28	Inverter status of previous and second faults	1	-
U0-29	The running time of the first and second faults (start timing after power-on, minutes)	1 min	\bigcirc
U0-30	The time of the first and second failures (timed from the running time, minutes)	1min	\bigcirc
Group U1: Application Monitoring Parameters			
U1-00	Operating frequency (Hz)	0.01 Hz	-
U1-01	Set frequency (Hz)	0.01 Hz	-
U1-02	Bus voltage (V)	0.1 V	-
U1-03	Output voltage (V)	1V	-
U1-04	Output current (A)	0.1 A	-
U1-05	Output power (Kw)	0.1 kW	-
U1-06	DI input status, hexadecimal number	1	-
U1-07	DO output status, hexadecimal number	1	-
U1-08	Voltage after Al1 correction	0.01 V	-
U1-09	Voltage after AI2 correction	0.01 V	-
U1-10	PID set value, PID set value (percentage)*PA-05	1	-
U1-11	PID feedback, PID feedback value (percentage)*PA-05	1	-

Function code	Name	Smallest unit	Change
U1-12	Count value	1	\bigcirc
U1-13	Length value	1	-
U1-14	Motor speed	rpm	-
U1-15	PLC stage, the current segment during multi-speed operation	1	\bigcirc
U1-16	PULSE pulse input frequency	0.01 kHz	\bigcirc
U1-17	Feedback speed, the actual operating frequency of the motor	0.1 Hz	\bigcirc
U1-18	P7-38 Remaining time of timing time	0.1Min	\bigcirc
U1-19	Al1 voltage before correction	0.001 V	-
U1-20	Al2 voltage before correction	0.001 V	\bigcirc
U1-21	DI5 high-speed pulse sampling line speed, refer to P7-71 for use	1m/min	\bigcirc
U1-22	Load speed display (set load speed when stopped), refer to P7-31 for use	customize	\bigcirc
U1-23	The power-on time	1Min	-
U1-24	This running time	0.1 Min	-
U1-25	PULSE pulse input frequency, different from U1-16 only in unit	1Hz	\bigcirc
U1-26	Communication setting frequency value	0.01\%	\bigcirc
U1-27	Main frequency display	0.01 Hz	-
U1-28	Auxiliary frequency display	0.01 Hz	\bigcirc
U1-29	Target torque, take the motor rated torque as 100\%	0.1\%	-
U1-30	Output torque, take the motor rated torque as 100\%	0.1\%	-
U1-31	Output torque, with the rated current of the inverter as 100\%	0.1\%	\bigcirc
U1-32	Torque upper limit, the rated current of the inverter is 100\%	0.1\%	-
U1-33	VF separation target voltage	1 V	-
U1-34	VF split output voltage	1 V	-
U1-36	Motor serial number currently in use	1	-
U1-37	AO1 target voltage	0.01 V	-

Chapter 8 Function \& Parameter Table

$\begin{aligned} & \text { Function } \\ & \text { code } \end{aligned}$	Name	Smallest unit	Change
U1-38	AO2 target voltage	0.01 V	\bigcirc
U1-39	Inverter running status, 0: Stop, 1: Forward, 2: Reverse, 3: Fault	1	\bigcirc
U1-40	Inverter current fault	1	\bigcirc
U1-41	Agent time remaining	1h	-
U1-42	AC incoming line current	0.1 A	-
U1-43	PLC current phase remaining time	0.1	\bigcirc
U1-47	Cumulative running time 1 (cumulative running time $=\mathrm{U} 1-$ $47 \text { + U1-48) }$	1h	\bigcirc
U1-48	Cumulative running time 2 (cumulative running time $=\mathrm{U} 1-$ $47 \text { + U1-48) }$	1min	\bigcirc
U1-50	Motor temperature	$1^{\circ} \mathrm{C}$	-

WARRANTY

(1) The company solemnly promises that users will enjoy the following warranty services from the date of purchase of products from our company (hereinafter referred to as the manufacturer).
(2) Since the product was purchased by the user from the manufacturer, enjoy the following three guarantee services:
\square Return, replacement and repair within 30 days of delivery:
\square Replacement and repair within 90 days of delivery:
\square Repair within 18 months of delivery:
\square Except when exporting abroad.
(3) This product enjoys lifetime paid service from the date of purchase by the user from the manufacturer.
(4) Disclaimer: Product failure caused by the following reasons is not covered by the manufacturer's free warranty service:
\square Failure caused by the user's use and operation in accordance with the requirements of the «Instruction Manual»:
\square Failure caused by the user to repair or modify the product without communicating with the manufacturer:
\square Failure caused by abnormal aging of the product due to poor user environment:
Z Failures caused by natural disasters such as earthquakes, fires, floods or abnormal voltages:
■ Damage to the product during transportation (the transportation method is specified by the customer, and the company assists in handling the cargo consignment procedures)
(5) Under the following conditions, manufacturers have the right not to provide warranty services:

־. When the manufacturer's product logo, trademark, nameplate, etc. are damaged or unrecognizable:
\square When the user fails to pay the purchase price in accordance with the signed contract:
\square The user intentionally conceals the manufacturer's after-sales service unit when the product is installed, wired, operated, maintained or otherwise improperly used
(6) For the service of return, replacement and repair, the company must return or return to the company, and it can only be returned or repaired after confirming the responsibility vested.

WARRANTY CARD

User information		
User name		
User address		
Postal code	Contact person	
Tel	Fax	
Machine type	Machine code	
Agent / Reseller Information		
Supplier		
Contact		
Tel	Delivery date	

CERTIFICATE OF QUALITY

QC test:

\qquad
This product has been tested by our company's quality department, and its performance meets the standards, passes the inspection, and is approved to leave the factory.

SHENZHEN K-EASY AUTOMATION CO.,LIMITED

- Add: Wisdom Lmgyu, baishixia community, Fuyong street, Bao an District, Shenzhen, China
C Tel: +86-0755-27850411
Q. Wechat/Whats App:+86-18382222496
- E-mail: alicia@keasyautomation.com
e http://www. keasyautomation.com

