User Manual

Series Drive

Preface

Thank you for choosing Series AC DRIVE. This user manual presents a detailed description of series with respect to product features, structural characteristics, functions, installation, parameter setting, troubleshooting, etc. Be sure to carefu lly read through the safety precautions before use, and use this product on the premise that personnel and equipment safety is ensured.

IMPORTANT NOTES

Please assure the intactness of product enclosure and all safety covers before installation .Operation must conform to the requirements of this manual and local industrial safety regulations and/or electrical codes.
> Contents of this manual may be subject to appropriate modification as a result of product upgrade, specification change and update of the manual.
> In the event of damage or loss of user manual, users may ask local distributors, offices or our Technical Service Department for a new one.
> If any item as stated in this manual is not clear, please contact for technical Service.
> If any anomaly occurs after power up or during the operation, it is essential to stop the machine and identify the fault or seek technical services as soon as possible.

Contents

Chapter 1 Product Information
1.1 Model Explanation 6
1.2 Nameplate Information 6
1.3 Information of Product Model 7
Chapter 2 Technical Features
2.1 Specifications 10
2.2 Structure diagram 12
2.3 Product Size 13
2.4 Keyboard size 15
Chapter 3 Main Circuit Terminals and Wiring
3.1 Main Circuit Terminals 19
3.2 Control Terminal Wiring 20
3.3 Wiring Diagram 21
3.4 Control Terminal Specification 22
3.5 Control Terminal Usage 23
Chapter 4 Operation and Display Interface
4.1 Introduction to Operation and Display Interface 26
4.2 Description of function code viewing and modification method. 27
Chapter 5 Parameter Table
Group F0: Basic function group 32
Group F1: Motor Parameters 34
Group F2: Vector Control Parameters of Motor 35
Group F3: V/f Control Parameters of Motor 36
Group F4: Analog and Pulse Input 37
Group F5: Analog and Pulse Output. 43
Group F6: Start/Stop Control 46
Group F7: Keys of Control panel 48
Group F8: Auxiliary setting of operating frequency 50
Group F9: Protection Parameters 52
Group FA: Process PID 55
Group Fb: Fixed length counting parameter. 57
Group Fc: Simple PLC 57
Group Fd: MODBUS Communication Parameters 64
Group FE: User-defined Display Parameters 65
Group FE: Password parameter setting group 66
Group A1: Wobble Frequency 67
Group U0: Status Monitoring 68
Group U1: History Fault. 71
Chapter 6 EMC attention
6.1 EMC Definition. 76
6.2 Introduction to EMC standards 76
6.3 EMC Guidance 76
Chapter 7 EMC attention
7.1 Table of Fault Codes 82
Warranty
Warranty Card
Certificate of quality

Chapter

Product Information

1.1 Model Explanation 6
1.2 Nameplate Information 6
1.3 Information of Product Model 7

Chapter 1 Product Information

1.1 Model Explanation

Model shown on product nameplate indicates the series name, applicable type of power supply, power class and the version of software and hardware, etc. via the combination of numbers, symbols and letters.

$$
\frac{4}{1} \frac{T}{2}=\frac{1.5}{3} \frac{G}{4}
$$

Code	No.	Content
Voltage level	(1	$2: 220 \mathrm{~V}$ $4: 380 \mathrm{~V}$
Voltage Classification	(2	S : Single-phase $\mathrm{T}:$ Three phase
Adapted motor powe	3	$0.4 \mathrm{KW} \sim 400 \mathrm{KW}$
Model	4	Heavy-duty

1.2 Nameplate Information

Model: 4T-4.0G
Power: 4.0KW
Input: 3PH/380V 15A 50Hz/60Hz
Input: $3 \mathrm{PH} / 380 \mathrm{~V} 9.4 \mathrm{~A} 0 \mathrm{~Hz}-600 \mathrm{~Hz}$
|||||||||||||||||||||||||||||||||||
CEEG3AFBC134212

1.3 Information of Product Model

Drive model	Power rating (kW)	3-phase rated output current(A)	1-phase rated input current(A)	3-phase rated input current(A)	Applicable motor (kW)	Brake chopper	
	Single/ three-phase 220V input, heavy duty						
	0.4	2.8	5.5	3.2	0.4		
	0.75	4.8	9.2	6.3	0.75		
	1.5	8.0	14.5	9	1.5	Inbuilt	
	2.2	10	23	15	2.2		
	3.7	17	35	20.5	3.7		

Drive model	Power rating (kW)	3-phase rated output current(A)	3-phase rated input current(A)	Applicable motor (kW)	Brake chopper
Three-phase 220V input, heavy duty					
2T-5.5G	5.5	25	29	5.5	Inbuilt
2T-7.5G	7.5	30	35	7.5	
2T-11G	11	45	50	11	
2T-15G	15	60	65	15	
2T-18.5G	18.5	75	80	18.5	
2T-22G	22	90	95	22	
2T-30G	30	110	118	30	

Drive model	Power rating (kW)	Rated output current(A)	Rated input current(A)	Applicable motor $(\mathbf{k W})$	Brake chopper
Three-phase 400V input, heavy duty/ light duty					
4T-0.7G	0.75	2.8	3.5	0.75	
4T-1.5G	1.5	4.3	5.0	1.5	
4T-2.2G	2.2	5.6	6.0	2.2	Inbuilt
4T-4.0G	3.7	9.4	10.5	3.7	
4T-5.5G	5.5	13	14.6	5.5	
4T-7.5G	7.5	17	20.5	7.5	

Chapter 1 Product Information

Drive model	Power rating (kW)	Rated output current(A)	Rated input current(A)	Applicable motor $\mathbf{(k W)}$	Brake chopper
4T-11G	11	25	29	11	Inbuilt
4T-15G	15	30	35	15	
4T-18.5G	18.5	37	44	18.5	
4T-22G	22	45	50	22	
4T-30G	30	60	65	30	Inbuilt
4T-37G	37	75	80	37	
4T-45G	45	90	95	45	
4T-55G	55	110	118	55	
4T-75G	75	150	157	45	-
4T-90G	90	176	180	90	-
4T-110G	110	210	215	110	-
4T-132G	132	253	232	132	-
4T-160G	160	310	285	160	-
4T-185G	185	350	326	185	-
4T-200G	200	380	354	200	-
4T-220G	220	430	403	220	-
4T-250G	250	470	441	250	-
4T-280G	280	520	489	280	-
4T-315G	315	590	571	315	-
4T-355G	355	650	624	355	-
4T-400G	400	725	700	400	-

Note:

Means brake chopper is optionally inbuilt.Braking resistor needs to be mounted externally:
$>$ Means the rated input current configured a DC reactor. The drive 4T2000B - 4T4000B is provided with an external-mounted DC reactor in shipment as default. Be sure to connect the $D C$ reactor. Failure to comply may result in drive abnormal run.

Technical Features

2.1 Specifications 10
2.2 Structure diagram 12
2.3 Product Size 13
2.4 Keyboard size 15

Chapter 2 Technical Features

2.1 Specifications

Items		Specifications
	Rated input voltage	3-phase AC208V/AC220V/AC230V/AC240V/AC380V/ AC400V/AC415V/AC440V/AC460V/AC480V 1-phase AC220V/AC230V/AC240V
	Frequency	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$, tolerance $\pm 5 \%$
	Voltage range	Continuous voltage fluctuation $\pm 10 \%$, short fluctuation $15 \% \sim+10 \%$, i.e. $200 \mathrm{~V}: 170 \mathrm{~V} \sim 264 \mathrm{~V}, 400 \mathrm{~V}$: $323 \mathrm{~V} \sim 528 \mathrm{~V}$
		Voltage out-of-balance rate $<3 \%$, distortion rate as per the requirements of IEC61800-2
	Rated input current	See Table 1-1
$\begin{aligned} & 0 \\ & 0 \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & \stackrel{C}{0} \\ & \stackrel{0}{C} \end{aligned}$	Applicable motor(kW)	See Table 1-1
	Rated current(A)	See Table 1-1
	Output voltage(V)	3-phase: 0~rated input voltage, error< $\pm 3 \%$
	Output frequency(Hz)	$0.00 \sim 600.00 \mathrm{~Hz}$; unit: 0.01 Hz
	Overload capacity	$150 \%-1 \mathrm{~min}, 180 \%-10 \mathrm{~s}, 200 \%-0.5 \mathrm{~s}$ every 10 min
	V/f patterns	V/f control Sensor-less vector control
	Range of speed regulation	1:100 (V/f control) 1:200 (sensor-less vector control)
	Speed accuracy	$\pm 0.5 \%$ (V/f control) $\pm 0.2 \%$ (sensor-less vector control)
	Speed fluctuation	$\pm 0.3 \%$ (sensor-less vector control)
	Torque response	$<10 \mathrm{~ms}$ (sensor-less vector control)
	Starting torque	0.5 Hz : 180\% (V/f control, sensor-less vector control)
$\begin{aligned} & 00 \\ & 00 \\ & \stackrel{0}{n} \\ & \stackrel{\rightharpoonup}{c} \\ & 0 \\ & \stackrel{0}{7} \\ & \omega \end{aligned}$	Start frequency	$0.00 \sim 600.00 \mathrm{~Hz}$
	Accel/Decel time	0.00~60000s
	Switching frequency	$0.7 \mathrm{kHz} \sim 16 \mathrm{kHz}$
	Frequency setting	Digital setting + control panel \wedge / \vee Digital setting + terminal UP/DOWN Communication Analog setting (Al1/AI2) Terminal pulse setting

	Items	Specifications
$\begin{aligned} & 00 \\ & 00 \\ & \stackrel{0}{n} \\ & \stackrel{\rightharpoonup}{c} \\ & 0 \\ & \stackrel{0}{7} \\ & \omega \end{aligned}$	Motor start-up methods	Started from starting frequency DC brake start-up Flying start
	Motor stop methods	Ramp to stop Coast to stop Ramp stop + DC brake
	Dynamic braking capacity	Brake chopper working voltage: 200V level: $325-375 \mathrm{~V} / 400 \mathrm{~V}$ level: 650V-750V Service time: 0-100.0s; brake chopper for 4T0150B and below are inbuilt or can be inbuilt optionally.
	DC brake capacity	DC brake start frequency: $0.00 \sim 600.00 \mathrm{~Hz}$ DC brake current: 0.0~100.0\% DC brake time: $0.0 \sim 30.00 \mathrm{~s}$
	Input terminals	6 digital inputs, one of which can be used for high-speed pulse input, and compatible with active open collectors NPN, PNP and dry contact input. 2 analog inputs, one of which is voltage/current programm able, and the other supports voltage only. and the extended one is voltage/current programmable
	Output terminals	1 high-speed pulse output, $0 \sim 50 \mathrm{kHz}$ square wave signal output. It can output signals such as frequency setting, or output frequency, etc. 1 digital output 1 relay output (can be extended to 2)
		1 analog output (can be extended to 2), voltage/current output programmable; can output signals such as frequency setting, or output frequency, etc.
	Parameter copy, parameter backup, flexible parameter displayed \& hidden, various master \& auxiliary setting and switchover, flying start, a variety of Accel/Decel curves optional, automatic correction of analog, brake control, 16-step speed control programmable (2-step speed supports flexible frequency command), wobble frequency control, count function, three history faults, over excitation brake, over voltage stall protection, under voltage stall protection, restart on power loss, skip frequency, frequency binding, four kinds of Accel/Decel time, motor thermal protection, flexible fan control, process PID control, simple PLC, multi-functional key programmable, droop control, autotuning, field-weakening control, V/f separated control.	

Chapter 2 Technical Features

Items		Specifications
	Place of operation	Indoors, no direct sunlight, free from dust, corrosive gases, flammable gases, oil mist, water vapor, water drop or salt, etc.
	Altitude	$0-2000 \mathrm{~m}$. De-rate 1% for every 100 m when the altitude is above 1000 meters
	Ambient temperature	$-10^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}$. The rated output current should be derated 1% for every $1^{\circ} \mathrm{C}$ when the ambient is $40^{\circ} \mathrm{C}--60^{\circ} \mathrm{C}$
	Relative humidity	0~95\%, no condensation
	Vibration	Less than $5.9 \mathrm{~m} / \mathrm{s} 2(0.6 \mathrm{~g})$
	Storage temperature	$-40^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$
$\begin{aligned} & \text { O } \\ & \frac{+}{J} \\ & \frac{D}{\omega} \\ & \hline \end{aligned}$	Efficiency at rated Amps	Rated power 7.5 kW and below: $\geqslant 93 \%$ 11~ 45kW: $\geqslant 95 \%$ 55 kW and above: $\geqslant 98 \%$
	IP grade	IP20
	Cooling method	Forced air cooling

2.2 Structure diagram

2.3 Product Size

Model	External and installation dimensions (mm)						Pore size	Weight (kg)
	W1	H1	H	H2	W	D		
2S-0.7G	67.5	160	170	----	84.5	129	Ф4.5	1.0
2S-1.5G								
4T-1.5G								
4T-2.2G								
2S-2.2G	85	185	194	----	97	143.5	Ф 5.5	1.4
2S-4.0G								
4T-4.0G								
4T-5.5G								
2T-5.5G	106	233	245	----	124	171.2	$\Phi 5.5$	2.5
4T-7.5G								
4T-11G								
2T-7.5G	120	317	335	----	200	178.2	Ф8	8.4
2T-11G								
4T-15G								
4T-18.5G								
4T-22G								

Chapter 2 Technical Features

Model	External and installation dimensions (mm)						Pore size	Weight (kg)
	W1	H1	H	H2	W	D		
2T-15G	150	387.5	405	----	255	195	Ф8	12.8
2T-18.5G								
4T-30G								
4T-37G								
2T-22G	180	437	455	----	300	225	Ф10	17.8
2T-30G								
4T-45G								
4T-55G								
4T-75G	260	750	785	----	395	291	Ф12	50
4T-90G								
4T-110G								
4T-132G	360	950	990	----	500	368	Ф14	88
4T-160G								
4T-185G								
4T-200G								
4T-220G	400	1000	1040	----	650	406	Ф14	123
4T-250G								
4T-280G								
4T-315G	600	1250	1300	----	815	428	Ф14	165
4T-355G								
4T-400G								

2.4 keyboard size

External dimension of external keyboard

Installation opening size of external keyboard

Chapter

Main Circuit Terminals and Wiring

3.1 Main Circuit Terminals 19
3.2 Control Terminal Wiring 20
3.3 Wiring Diagram 21
3.4 Control Terminal Specification 22
3.5 Control Terminal Usage 23

WARNING

> Only qualified personnel familiar with AC motor drives are allowed to implement wiring. Failure to comply may result in equipment damage and/or personnel injury even death.
$>$ Wiring should be in strict accordance with this manual, otherwise hazard of electric shock or equipment damage exists.
> Make sure input power supply has been completely disconnected before wiring operation. Failure to comply will result in personnel injury even death.
$>$ All wiring operations and lines should comply with EMC and national and local industrial safety regulations and/or electrical codes. The conductor diameter should be in accordance with recommendations of this manual. Otherwise, hazard of equipment damage, fire, and/or personnel injury exists.
$>$ Since leakage current of the drive may exceed 3.5 mA , for safety's sake, the drive and the motor must be grounded so as to avoid hazard of electric shock.
$>$ Be sure to perform wiring in strict accordance with the drive terminal marks. Never connect three-phase power supply to output terminals U/T1, V/T2 and W/T3. Failure to comply will result in equipment damage.

ATTENTION

> Signal wires should be away from main power lines to the best of possibility. In the event that this cannot be ensured, vertical cross arrangement should be adopted, reducing EMI interference to the signal wires as much as possible.
$>$ In case the motor cable exceeds 100m, an appropriate output reactor should be mounted.

3.1 Main Circuit Terminals

Terminal marks	Designation and function of terminals
R/L, S/L2, T/L3	Single / Three-phase AC input terminals (Connect R/L1, T/L3 when use single phase input)
$\oplus, B 1$	Braking resistor connection terminals
U/T1, V/T2, W/T3	Three-phase AC output terminals
\oplus	Ground terminal PE

\diamond Main circuit terminal of three-phase 380V frequency converter

\diamond Specification of three-phase / single-phase converter main circuit terminal 220V

3.2 Control Terminal Wiring

WARNING

$>$ Only qualified personnel familiar with AC motor drives are allowed to implement wiring. Failure to comply may result in equipment damage and/or personnel injury even death.
$>$ Wiring should be in strict accordance with this manual, otherwise hazard of electric shock or equipment damage exists.
> Make sure input power supply has been completely disconnected before wiring operation. Failure to comply will result in personnel injury even death.
$>$ All wiring operations and lines should comply with EMC and national and local industrial safety regulations and/or electrical codes. The conductor diameter should be in accordance with recommendations of this manual. Otherwise, hazard of equipment damage, fire, and/or personnel injury exists.
$>$ Screws or bolts for terminal wiring must be screwed tightly.
$>$ AC 220 V signal is prohibited from connecting to terminals other than control terminals $R A, R B$ and $R C$.

ATTENTION

$>$ Signal wires should be away from main power lines to the best of possibility. If this cannot be ensured, vertical cross arrangement should be adopted, reducing EMI interference to the signal wires as much as possible.
$>$ The encoder must be provided with shielded cables whose shielded layer must be properly grounded.

3.3 Wiring Diagram

Chapter 3 Main Circuit Terminals and Wiring

3.4 Control Terminal Specification

Catego ry	Terminal	Terminal designation	Description
Analog input	+10V	Analog input reference voltage	10.1 V $\pm 3 \%$
			Maximum output current 25 mA The resistance of external potentiometer should be larger than 400Ω
	GND	Analog ground	Isolated from COM interiorly
	Al1	Analog input 1	$0 \sim 20 \mathrm{~mA}$: input impedance -500Ω, maximum input current - 25 mA
			$0 \sim 10 \mathrm{~V}$: input impedance $-22 \mathrm{k} \Omega$, maximum input voltage -12.5 V
			Switch Al1 on control board for jumping from $0 \sim 20 \mathrm{~mA}$ and $0 \sim 10 \mathrm{~V}$, factory default: $0 \sim 10 \mathrm{~V}$
	Al2	Analog input 2	-10V~10V: input impedance - $25 \mathrm{k} \Omega$
			Range: -12.5V +12.5 V
Analog output	A01	Analog output 1	0~20mA: impedance - 200 $2 \sim 500 \Omega$
			$0 \sim 10 \mathrm{~V}$: impedance $\geqslant 10 \mathrm{k}$
			Switch AO1 on control board for jumping between $0 \sim 20 \mathrm{~mA}$ and $0 \sim 10 \mathrm{~V}$, factory default: $0 \sim 10 \mathrm{~V}$
	GND	Analog ground	Isolated from COM interiorly
Digital input	+24V	+24V	$24 \mathrm{~V} \pm 10 \%$, Isolated from GND interiorly
			Maximum load - 200mA
	PLC	Digital input Common terminal	Used for switching between high and low levels, short-circuited with +24 V when delivery, i.e. low value of digital input valid
			External power input
	COM	+24V ground	Isolated from GND interiorly
	X1~X5	Digital input Terminals 1~5	Input: 24VDC, 5mA
			Range of frequency: $0 \sim 200 \mathrm{~Hz}$
			Range of voltage: 10V 30V
	X6/DI	Digital input/pulse input	Digital input: same as X1~X5
			Pulse input: $0.1 \mathrm{~Hz} \sim 50 \mathrm{kHz}$; range of voltage: $10-30 \mathrm{~V}$

Chapter 3 Main Circuit Terminals and Wiring

Category	Terminal	Terminal designation	Description
Digital output	Y	Open collector output	Range of voltage: 0~24V
			Range of current: 0~50mA
	Y/DO	Open collector out / Pulse out	Open collector output: same as Y
			Pulse output: $0 \sim 50 \mathrm{kHz}$
Relay output	RA/RB /RC	Control board relay output	RA-RB: NC; RA-RC: NO
			Contact capacity: 250VAC/3A, 30VDC/3A
Terminal 485 Interface	485+	485 differential signal +	Rate: 4800/9600/19200/38400/57600/115200bps
	485-	485 differential signal -	Maximum distance - 500m (standard network cable used)
	GND	485 communication shield grounding	Isolated from COM interiorly
Control panel		Control panel SPI interface	Maximum communication distance is 3 m when connected to Control panel
			Use standard network cable

3.5 Control Terminal Usage

Lay-out of Control Terminals

\diamond Instruction of Signal Switches

Chapter

Operation and Display Interface

4.1 Introduction to Operation and Display Interface 26
4.2 Description of function code viewing and modification method. 27

Chapter 4 Operation and Display Interface

4.1 Introduction to Operation and Display Interface

The operation panel can be used to modify the function parameters of the product , monitor the working status of the product and control the operation of the product (start and stop). The appearance and function area are shown in the following figure:

4.1.1 Introduction to Indicators

Name	Function Description					
Status indicator	FWD/ REV	When the machine is stopped, when the Fwd lamp is on, it indicates that the product forward rotation command is valid; when the machine is running, it indicates that the product is running in the forward rotation state; when Fwd flashes, it shows that the product is switching from the forward rotation state to the reverse rotation state. When the machine is stopped, the rev lamp is on, indicating that the reverse rotation command of the product is valid, or the reverse operation state. When the rev lamp flashes, indicating that the product is switching from the reverse rotation state to the forward rotation state.				
Unit indicator	Hz	Frequency unit	A	Current unit	V	Voltage unit
	RMP	$(\mathrm{Hz}+\mathrm{A})$ units	\%	($\mathrm{A}+\mathrm{V}$) percent		
Digital display	5-digit led display, which can display the set frequency, output frequency, various monitoring data and alarm code, etc.					

4.1.2 Key Description

Key	Key Name	Function				
ESC	Programming key	Level 1 Menu Entry or Exit		SET	Confirm key	Enter the menu screen step by step, and confirm the parameter settings
:---:	:---:	:---				
Incremental Key	Increment of data or function code					
SHIFT	Decreasing key	Decrement of data or function code				

4.2 Description of function code viewing and modification method

The operation panel of MS10 product adopts secondary menu structure to set parameters and other operations.

4.2.1 Parameter modification/setting steps:

The operation panel of MS10 product adopts secondary menu structure to set parameters and other operations.
> In the monitoring state, press ESC to enter the function code parameter display state.
> When the parameter code is displayed, the current flashing bit data can be modified by pressing the "shift" key and flashing the parameter bit of parameter function code.
$>$ Modif that flashing paramete group to the modified target function code group by pressing the/key.
> Press "set" to enter the parameter function code.
> Modify to the target parameter value, press set, and confirm to modify the parameter value.
> Aft that parameter modification is finis, the current display function code automatically jumps to the next effective display function code to finish the parameter modification.

Parameter value adding

4.2.2 Monitoring status display

4.2.2.1 Monitoring parameter switching in shutdown state

When the machine is stopped, the preset frequency is displayed by default.
When the preset frequency is displayed, the display value flashes. You can switch to display other parameters by pressing the shift key. In addition to setting the frequency in the shutdown state, we also need to check the bus voltage, and switch to the display content in the shutdown state through the shift button.

4.2.2.2 Monitoring parameter switching in running state

In the running status, the running frequency is displayed by default, and other parameters can be switched and displayed by the Shift key. For example, in the shutdown state, besides setting the frequency, we also need to check the bus voltage and output current, and switch to the display content in the shutdown state through the shift key.

4.2.2.3 Monitoring parameter switching in running state

If the digital function terminal up/down is valid or/on the operation panel under the shutdown, fault or operation state, directly enter the digital frequency parameter modification state, and directly write the modified frequency into the F0.07 parameter group.

Parameter Table

Chapter 5 Parameter Table

fault or operation state, directly enter the digital frequency parameter modification state, and directly write the modified frequency into the F0.07 parameter group. $\wedge \vee$

Par.	Designation	Scope	Default	Attr
Group F0: Basic function group				
F0-01	Motor control technique	0: V/f control 1: Sensor-less vector control	0	\times
F0-02	Run command	0: Operator Panel 1: Terminal 2: Communication	0	\triangle
F0-03	Master FREQ set	```0 : Digital setting (FO-04) \(+\Lambda / v\) adjustment on Operator panel. 1: Digital setting (F0-04) + UP/DW adjustment on Operator panel. 2: Analog input AI1 3: Analog input AI2 4: VP (Operator panel) 5: X6/DI pulse input 6: Process PID output 7: PLC 8: Multi-step speed 9: Communication```	4	\triangle
F0-04	FREQ digital setting	0.00~Fmax	50.00 Hz	©
F0-05	Auxiliary FREQ set	0 : No setting 1: Digital setting (F0-04) $+\Lambda / v$ adjustment on Operator panel 2: Digital setting (F0-04) + terminal UP/DOWN adjustment 3: Analog input Ai1 4: Analog input Ai2 5: VP (Operator panel) 6: X6/DI pulse input 7: Process PID output 8: PLC 9: Multi-step speed 10: Communication	0	\triangle

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
F0-06	Auxiliary FREQ digital setting	Lower limit FREQ ~ upper limit FREQ	0	\times
F0-07	Auxiliary FREQ range	0: Relative to maximum FREQ 1: Relative to master FREQ	0	\triangle
F0-08	Auxiliary FREQ coeff	0.0\% ~100.0\%	4	\triangle
F0-09	FREQ set mode	0: Master FREQ set 1: Master \& auxiliary computation result 2: Switch between master and auxiliary set 3: Switch between master FREQ set, and master \& auxiliary computation result 4: Switch between auxiliary FREQ set, and master \& auxiliary computation result	50.00 Hz	()
F0-10	Computation of master and auxiliary FREQ	0: Master + auxiliary 1: Master - auxiliary 2: Max \{master, auxiliary\} 3: Min \{master, auxiliary\}	0	\triangle
F0-11	Run direction	0 : Forward 1: Reverse	0	\triangle
F0-12	Maximum FREQ	Upper limit FREQ $\sim 600.00 \mathrm{~Hz}$	50.00 Hz	\times
F0-13	Upper limit FREQ	Lower limit FREQ ~ maximum FREQ	50.00 Hz	\times
F0-14	Lower limit FREQ	$0.00 \mathrm{~Hz} \sim$ upper limit FREQ	0.00 Hz	\times
F0-15	Switching FREQ	$0.7 \mathrm{kHz} \sim 16.0 \mathrm{kHz}$, factory default	Model dependent	\triangle
F0-16	PWM optimization	Switching FREQ relation with temperature 0 : Self-adaption 1: No adaptio	0	\times

Par.	Designation	Scope	Default	Attr
F0-17	Accel time 1	Os~600.00s/6000.0s/60000s	Model dependent	\triangle
F0-18	Decel time 1	Os~600.00s/6000.0s/60000s	Model dependent	\triangle
F0-19	Accel/Decel time resolution	$\begin{aligned} & 0: 0.01 \mathrm{~s} \\ & 1: 0.1 \mathrm{~s} \\ & 2: 1 \mathrm{~s} \end{aligned}$	4	\triangle
F0-20	Binding of run command and frequency set	Frequency set bundled under Operator panel control: 0 : No binding 1: Digital setting (F0-04) $+\Lambda / v$ adjustment on Operator panel 2: Digital setting (F0-04) + terminal UP/DOWN adjustment 3: Analog input Al1 4: Analog input Al2 5: VP(Operator panel) 6: X6/DI pulse input 7: Process PID output 8: Simple PLC 9: Multi-step FREQ A: Communication input Tens place: FREQ set bundled under terminal control (same as ones place) Hundreds place: FREQ set bundled under communication control (same as ones place)	000	\times
Group F1 Motor Parameters				
F1-00	Type of motor	0 : Ordinary motor 1: Variable frequency motor	1	\times
F1-01	Power rating of motor	0.4kW~6553.5kW	Model dependent	\times

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
F1-02	Rated voltage of motor	0V~480V (for drives 400V level)	380 V	\times
F1-03	Rated current of motor	0.0A~6553.5A	Model dependent	\times
F1-04	Rated frequency of motor	$0.00 \mathrm{~Hz} \sim$ upper limit frequency	50.00 Hz	\times
F1-05	Pole number of motor	1~80	4	\times
F1-06	Rated speed of motor	0~65535r/min	Model dependent	\times
F1-07	Stator resistance R1 of motor	$0.001 \Omega \sim 65.535 \Omega$	Model dependent	\times
F1-08	Leakage inductance L1 of motor	$0.1 \mathrm{mH} \sim 6553.5 \mathrm{mH}$	Model dependent	\times
F1-09	Rotor resistance R2 of motor	$0.001 \Omega \sim 65.535 \Omega$	Model dependent	\times
F1-10	Mutual inductance L2 of motor	$0.1 \mathrm{mH} \sim 6553.5 \mathrm{mH}$	Model dependent	\times
F1-11	No-load current of motor	0.0A~6553.5A	Model dependent	\times
F1-12	Flux weakening coeff 1 of motor	0.0000~1.0000	Model dependent	\times
F1-28	Autotuning of motor	0: No autotuning 1: Static autotuning 2: Rotary autotuning	0	\times
Group F2 Vector Control Parameters of Motor				
F2-00	ASR low-speed proportional gain	0.0~20.0	2.0	\triangle
F2-01	ASR low-speed integration time	0.000s~8.000s	0.200	\triangle
F2-02	ASR switching FREQ 1	$0.00 \mathrm{~Hz} \sim \mathrm{~F} 2-05$	5.00 Hz	\triangle
F2-03	ASR high-speed proportional gain	0.0~20.0	2.0	\triangle
F2-04	ASR high-speed integration time	0.000s~8.000s	0.200	\triangle

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
F2-05	ASR switching FREQ 2	F2-02~upper limit FREQ	10.00 Hz	\triangle
F2-06	ACR proportion coeff	0.000~4.000	1.000	\triangle
F2-07	ACR integration coeff	0.000~4.000	1.000	\triangle
F2-08	Pre-excitation time	0.000s~5.000s	0.200s	\triangle
F2-09	ASR input filtering time	$0.0 \mathrm{~ms} \sim 500.0 \mathrm{~ms}$	0.3 ms	\triangle
F2-10	ASR output filtering time	0.0ms $\sim 500.0 \mathrm{~ms}$	0.3 ms	\triangle
Group F3 V/f Control Parameters of Motor				
F3-00	V/f curve setting	0: Linear V/f 1: Multi-stage V/f (F3-01 ~ F3-08) 2-6: 1.2th - 2.0nd power 7: V/f separated mode 1	0	\times
F3-01	V/f FREQ value 3	$0.00 \mathrm{~Hz} \sim$ motor rated FREQ	50.00 Hz	\times
F3-02	V/f voltage value V3	0.0\% ~ 100.0\%	100.0\%	\times
F3-03	V/f FREQ value f2	F3-05 ~ F3-01	0.00 Hz	\times
F3-04	V/f voltage value V 2	0.0\% ~100.0\%	0.0\%	\times
F3-05	V/f FREQ value f1	F3-07 ~ F3-03	0.00 Hz	\times
F3-06	V/f voltage value V1	0.0\% ~ 100.0\%	0.0\%	\times
F3-07	V/f FREQ value f0	$0.00 \mathrm{~Hz} \sim$ F3-05	0.00 Hz	\times
F3-08	V/f voltage value V0	0.0\% ~ 100.0\%	0.0\%	\times
F3-09	Torque boost	0.0\% ~ 30.0\%	0.0\%	\triangle
F3-10	Slip compensation gain	0.0\% 400.0%	100.0\%	\triangle
F3-11	V/f oscillation suppression gain 1	0~3000	38	\triangle
F3-13	Voltage setting on V/f separated pattern	0: F3-14 digital setting 1: Set by Al1 2: Set by Al2 3: VP(Operator panel) 4: Process PID output 5: AI1 + process PID output	0	\times

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
F3-14	Digital set voltage on V/f separated pattern	0.0\%~100.0\%	0.0\%	\triangle
F3-15	Voltage variation time on V/f separated pattern	0.00s~600.00s	0.01s	\triangle
F3-17	Current limitation source	0: Disabled 1: Set by F3-18 2: Set by Al1 3: Set by Al2 4: Set by VP(Operator panel) 5: Set by X6/DI	1	\times
F3-18	Digital setting of current limit value	20.0\% ~200.0\%	160.0\%	\times
F3-19	Flux weakening current limit coeff	0.001~1.000	0.500	\triangle
Group F4 Analog and Pulse Input				
F4-00	Function of terminal X1	0 : No function 1: JOG forward 2: JOG reverse 3: Run forward (FWD) 4: Run reverse (REV) 5: Three-wire control 6: Run suspended 7: External stop 8: Emergency stop 9: Reserved 10: DC brake stop 11: Coast to stop 12: Terminal UP 13: Terminal DOWN 14: Clear UP/DOWN (including $1 / v$ key) adjustment 15: Multi-step FREQ terminal 1 16: Multi-step FREQ terminal 2	3	\times
F4-01	Function of terminal X2		4	\times
F4-02	Function of terminal X3		0	\times
F4-03	Function of terminal X4		0	\times
F4-04	Function of terminal X5		0	\times
F4-05	Function of terminal X6/DI		0	\times
F4-07	Function of terminal Al1 (Digital enabled)		1	\times
F4-08	Function of terminal AI2 (Digital enabled)		1	\times

Par.	Designation	Scope	Default	Attr
		17: Multi-step FREQ terminal 3 18: Multi-step FREQ terminal 4 19: Accel/Decel time determinant 1 20: Accel/Decel time determinant 2 21: Accel/Decel disabled(ramp stop not inclusive) 22: External fault input 23: Fault reset (RESET) 24: Pulse input (valid only for X6/DI) 25-26: Reserved 27: Run command switched to control panel 28: Run command switched to terminal control 29: Run command switched to communication control 30: Frequency set mode shift 31: Master FREQ set switched to digital setting F0-04 32: Auxiliary FREQ set switched to digital setting F0-06 33: PID adjustment direction 34: PID paused 35: PID integration paused 36: PID parameter switch 37: Count input 38: Count clear 39: Length count 40: Length clear 41: Simple PLC paused 42: Simple PLC disabled 43: Simple PLC stop memory clear 44: Start wobble frequency 45: Clear wobble frequency status 46: Run prohibited 47: DC brake in run 48: Reserved		

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
F4-10	Filtering time of digital input terminal	0.000s~1.000s	0.010s	\triangle
F4-11	Delay time of terminal X 1	0.0s~3600.0s	0.0s	\triangle
F4-12	Delay time of terminal X2	0.0s~3600.0s	0.0s	\triangle
F4-13	FWD/REV terminal control mode	0: Two-wire mode 1 (FWD terminal inputs forward run command, while REV terminal inputs reverse run command.) 1: Two-wire mode 2 (FWD terminal inputs run command, while REV terminal inputs run direction) 2: Three-wire mode 1 (Same as mode0, digital input terminal "three-wire run" controls the stop, Input signals of all these three terminals take effect when trigger edge is detected.) 3: Three-wire mode 2 (Same as mode1,digital input terminal "three-wire run" controls the stop, Input signals of all these three terminals take effect when trigger edge is detected.)	0	\times
F4-14	Terminal UP/DOWN frequency change step size	$0.00 \mathrm{~Hz} / \mathrm{s} \sim 100.00 \mathrm{~Hz} / \mathrm{s}$	$0.03 \mathrm{~Hz} / \mathrm{s}$	\triangle
F4-15	Terminal UP/DOWN FREQ adjustment action	Ones place: at stop 0: Cleared 1: Maintained Tens place: on power loss 0: Cleared	0000	\triangle

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
F4-20	Digital input terminal enabled status setting 3	Ones place: Al1 0 : Positive logic 1: Negative logic Tens place: Al2 (same as ones place)	0000	\times
F4-21	Analog input curve	Ones place: Al1 input curve 0 : Curve 1 (2 points) 1: Curve 2 (4 points) 2: Curve 3 (4 points) 3 : Curve 2 and curve 3 switchover Tens place: AI2 input curve (same as ones place)	0010	\times
F4-22	Curve 1 maximum input	Curve 1 minimum input~110.0\%	100.0\%	\triangle
F4-23	Corresponding set value of curve 1 maximum input	-100.0\%~100.0\%	100.0\%	\triangle
F4-24	Curve 1 minimum input	-110.0\% curve 1 maximum input	0.0\%	\triangle
F4-25	Corresponding set value of curve 1 minimum input	-100.0\% 100.0\%	0.0\%	\triangle
F4-26	Ai1 terminal filtering time	0.000s~10.000s	0.1s	\triangle
F4-27	Ai2 terminal filtering time	0.000s~10.000s	0.1s	\triangle
F4-28	Curve 2 maximum input	Range: input of curve 2 inflection point A~110.0\%	100.0\%	\triangle
F4-29	Set value corresponding to curve 2 maximum input	Range: -100.0\%~100.0\%	100.0\%	\triangle
F4-30	Input of curve 2 inflection point A	Input of curve 2 inflection point B ~curve 2 maximum input	0.0\%	\triangle

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
F4-31	Set value Cor. to input of curve 2 inflection point A	Range: -100.0\%~100.0\%	0.0\%	\triangle
F4-32	Input of curve 2 inflection point B	Range: Curve 2 minimum input ~ Input of curve 2 inflection point A	0.0\%	\triangle
F4-33	Set value corresponding to input of curve 2 inflection point B	Range: -100.0\%~100.0\%	0.0\%	\triangle
F4-34	Curve 2 minimum input	Range: -110.0\%~ input of curve 2 inflection point B	0.0\%	\triangle
F4-35	Set value corresponding to curve 2 minimum input	Range: -100.0\%~100.0\%	0.0\%	\triangle
F4-36	Curve 3 maximum input	Range: input of curve 3 inflection point A ~110.0\%	100.0\%	\triangle
F4-37	Set value corresponding to curve 3 maximum input	Range: -100.0\%~100.0\%	100.0\%	\triangle
F4-38	Input of curve 3 inflection point A	Range: input of curve 3 inflection point B ~ curve 3 maximum input	0.0\%	\triangle
F4-39	Set value corresponding to input of curve 3 inflection point A	Range: -100.0\%~100.0\%	0.0\%	\triangle
F4-40	Input of curve 3 inflection point B	Range: curve 3 minimum input~ input of curve 3 inflection point A	0.0\%	\triangle
F4-41	Set value corresponding to input of curve 3 inflection point B	Range: -100.0\%~100.0\%	0.0\%	\triangle
F4-42	Curve 3 minimum input	Range: -110.0\%~ input of curve 3 inflection point B	0.0\%	\triangle

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
F4-43	Set value corresponding to curve 3 maximum input	Range: -100.0\%~100.0\%	100.0\%	\triangle
F4-44	DI maximum input	Range: F4-46~50.0kHz	50.0 kHz	\triangle
F4-45	Set value corresponding to DI maximum input	Range: -100.0\%~100.0\%	100.0\%	\triangle
F4-46	DI minimum input	Range: $0.0 \mathrm{kHz} \sim \mathrm{F} 4-44$	0.0 kHz	\triangle
F4-47	Set value corresponding to DI minimum input	Range: -100.0\%~100.0\%	0.0\%	\triangle
F4-48	DI filtering time	0.000s~1.000s	0.001s	\triangle
Group F5 Analog and Pulse Output				
F5-00	Y/DO output function (when used as Y)	0: No output 1: Drive undervoltage 2: Drive run preparation completed 3: Drive is running 4: Drive running at OHz (there is no output at stop) 5: Drive running at 0 Hz (there is output at stop) 6: Run direction 7: FREQ attained 8: Upper limit FREQ attained 9: Lower limit FREQ attained 10: Frequency detection FDT1 11: Frequency detection FDT2 12-13: Reserved 14: Fault output 15: Alarm output 16: Drive (motor) overloaded alarm	0~32	\triangle

Par.	Designation	Scope	Default	Attr
		17: Drive overheat alarm 18: Zero current detection 19: X1 20: X2 21: Reserved 22: Set count value attained 23: Designated count value attained 24: Length attained 25: Consecutive run time attained 26: Accumulative run time attained 27-29: Reserved 30: PLC step completed 31: PLC cycle completed 32: Wobble frequency attains to upper or lower limit frequency		
F5-01	Y output time delay	0.0s~3600.0s	0.0s	\triangle
F5-04	Control board relay output time delay	0.0s~3600.0s	0.0s	\triangle
F5-05	Option board relay output time delay	0.0s~3600.0s	0.0s	\triangle
F5-09	Enabled state of digital output	Ones place: Y1 0 : Positive logic 1: Negative logic Hundreds place: control board relay output (same as ones place)	0000	\times

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
F5-10	AO output function	0: No output 1: Set FREQ 2: Output FREQ 3: Output current (to drive rated) 4: Output torque (absolute value) 5: Output voltage 6: Output power 7: Bus voltage 8-9: Reserved 10: Magnetic flux current 11:Al1 12:AI2	2	\triangle
F5-11	AO offset	-100.0\% 100.0\%	0.0\%	\times
F5-12	AO gain	-2.000~2.000	1.000	\times
F5-13	AO filtering time	0.0s~10.0s	0.0s	\triangle
F5-14	Y/DO output function (when used as DO)	Same as F5-10	0	\triangle
F5-15	DO maximum output pulse FREQ	$0.1 \mathrm{kHz} \sim 50.0 \mathrm{kHz}$	50.0 kHz	\triangle
F5-16	DO output center point	0 : No center point 1: Center point is (F5-15)/2, and the corresponding parameter value is positive when FREQ is higher than center point 2: Center point is (F5-15)/2, and the corresponding parameter value is positive when FREQ is lower than center point	0	\times
F5-17	DO output filtering time	0.00s~10.00s	0.00s	\triangle
F5-18	Detection width of FREQ attained	0.00Hz~maximum FREQ	2.50 Hz	\triangle
F5-19	Zero current detection value	0.0\%	5.0\%	\triangle

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
F5-20	Zero current detection time	0.01s~50.00s	0.50s	\triangle
Group F6 Start/Stop Control				
F6-00	Start method	0: From start FREQ 1: DC braking start 2: Flying start	0	\times
F6-01	Flying start 1 current	0.0~200.0\%	100.0\%	\times
F6-02	Flying start 1 Decel time	0.1s~20.0s	2.0s	\times
F6-03	Flying start 1 adjustment coeff	0.0 ~ 100.0\%	1.0\%	\times
F6-04	Start FREQ	$0.00 \mathrm{~Hz} \sim$ upper limit FREQ	0.00 Hz	\times
F6-05	Holding time of start FREQ	0.0s~3600.0s	0.0s	\triangle
F6-06	DC braking current at start	0.0\% ~ 200.0\%	0.0\%	\triangle
F6-07	DC braking time at start	0.00s~30.00s	0.0s	\triangle
F6-08	Accel/Decel curve	0: Linear Accel/Decel 1: Broken-line Accel/Decel 2-3: S-curve Accel/Decel	0	\times
F6-09	Time of Accel S-curve first segment	0.00s~60.00s (S-curve A)	0.20s	\triangle
F6-10	Time of Accel S-curve last segment	0.00s~60.00s (S-curve A)	0.20s	\triangle
F6-11	Time of Decel S-curve first segment	0.00s~60.00s (S-curve A)	0.20s	\triangle
F6-12	Time of Decel S-curve last segment	0.00s~60.00s (S-curve A)	0.20s	\triangle
F6-13	Proportion of Accel S-curve first segment	0.0\%~100.0\% (S-curve B)	20.0\%	\triangle
F6-14	Proportion of Accel S-curve last segment	0.0\%~100.0\% (S-curve B)	20.0\%	\triangle
F6-15	Proportion of Decel S-curve first segment	0.0\%~100.0\% (S-curve B)	20.0\%	\triangle
F6-16	Proportion of Decel S-curve last segment	0.0\% 100.0% (S-curve B)	20.0\%	\triangle

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
F6-17	Stop method	0: Ramp to stop 1: Coast to stop 2: Ramp to stop + DC brake	0	\times
F6-18	Start FREQ of DC brake stop	$0.00 \mathrm{~Hz} \mathrm{\sim upper} \mathrm{limit} \mathrm{FREQ}$		

Par.	Designation	Scope	Default	Attr
Group F7 Keys of Control panel				
F7-00	MF key setting	0: No function 1: Forward jog 2: Reverse jog 3: Forward/reverse switchover 4: Emergency stop 1 (set Decel time by F8-09) 5: Emergency stop 2 (coast to stop) 6: Run command sources shifted	0	\triangle
F7-01	Keys locked option	0 : Not locked 1: All locked 2: Keys locked except RUN, STOP/RESET 3: Keys locked except STOP/RESET 4: Keys locked other than <<SHIFT>>	0	\triangle
F7-02	Function of STOP key	0: STOP key active only at control panel control 1: STOP key deactivated under any command source	0	\triangle
F7-03	FREQ adjustment through keys \wedge / v	Ones place: option at stop 0: Clear at stop 1: Holding at stop Tens place: option at power loss 0 : Clear at power loss 1: Holding at power loss	0100	\triangle
F7-04	Step size of FREQ adjustment through keys \wedge / v	$0.00 \mathrm{~Hz} / \mathrm{s} \sim 10.00 \mathrm{~Hz} / \mathrm{s}$	$0.03 \mathrm{~Hz} / \mathrm{s}$	\triangle
F7-05	Display parameter setting 1 on run status	Binary system setting: 0 : No display 1: Display Ones place:	080F	\triangle

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
		BITO: Run FREQ (Hz) BIT1: Set FREQ (Hz) BIT2: Bus voltage (V) BIT3: Output current (A) Tens place: BITO: Output torque (\%) BIT1: Output power (kW) BIT2: Output voltage (V) BIT3: Motor speed (r/min) Hundreds place: BITO: Al1 (V) BIT1: AI2 (V) BIT3: Output sync FREQ (Hz) Thousands place: BITO: DI BIT1: External count value BIT2: Reserved BIT3: Reserved Note: when this parameter value is set to 0000 , run FREQ (Hz) would be displayed as default		
F7-06	Display parameter setting 2 on run status	Binary system setting: 0 : No display 1: Display Ones place: BITO: Run linear speed (m / s) BIT1: Set linear speed (m / s) BIT2: Input terminal status BIT3: Output terminal status Tens place: BIT0: PID setting (\%) BIT1: PID feedback (\%) BIT2: Set length (m) BIT3: Actual length (m) Hundreds place: reserved Thousands place: reserved	0000	\triangle

Par.	Designation	Scope	Default	Attr
F7-07	Display parameter setting on stop status	Binary system setting: 0 : No display 1: Display Ones place: BIT0: FREQ setting (Hz) BIT1: Bus voltage (V) BIT2: Input terminal status BIT3: Output terminal status Tens place: BIT0: Al1 (V) BIT1: AI2 (V) BIT2-3: Reserved Hundreds place: BIT0: PID setting (\%) BIT1: PID feedback (\%) BIT2: Set length (m) BIT3: Actual length (m) Thousands place: BIT0: Run linear speed (m / s) BIT1: Set linear speed (m / s) BIT2: External count value BIT3: DI Note: when this parameter value is set to 0000, the set FREQ would be displayed as default (Hz)	0000	\triangle
F7-08	Linear speed COEFF	0.1\%~999.9\%	100.0\%	\triangle
Group F8 Auxiliary setting of operating frequency				
F8-00	Jog FREQ	$0.00 \mathrm{~Hz} \sim$ upper limit FREQ	5.00 Hz	\triangle
F8-01	Jog Accel time	Os~600.00s/6000.0s/60000s	6.0 s	\triangle
F8-02	Jog Decel time	Os~600.00s/6000.0s/60000s	6.0 s	\triangle
F8-03	Accel time 2	0s~600.00s/6000.0s/60000s	6.0 s	\triangle
F8-04	Decel time 2	0s~600.00s/6000.0s/60000s	6.0 s	\triangle

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
F8-05	Accel time 3	0s~600.00s/6000.0s/60000s	6.0 s	\triangle
F8-06	Decel time 3	0s~600.00s/6000.0s/60000s	6.0s	\triangle
F8-07	Accel time 4	0s~600.00s/6000.0s/60000s	6.0s	\triangle
F8-08	Decel time 4	0s~600.00s/6000.0s/60000s	6.0 s	\triangle
F8-09	Decel time for emergency stop	Os~600.00s/6000.0s/60000s	6.0 s	\triangle
F8-10	Lower limit of skip FREQ band 1	$0.00 \mathrm{~Hz} \sim$ upper limit FREQ	0.00 Hz	\times
F8-11	Upper limit of skip FREQ band 1	$0.00 \mathrm{~Hz} \sim$ upper limit FREQ	0.00 Hz	\times
F8-12	Lower limit of skip FREQ band 2	$0.00 \mathrm{~Hz} \sim$ upper limit FREQ	0.00 Hz	\times
F8-13	Upper limit of skip FREQ band 2	$0.00 \mathrm{~Hz} \sim$ upper limit FREQ	0.00 Hz	\times
F8-14	Lower limit of skip FREQ band 3	$0.00 \mathrm{~Hz} \sim$ upper limit FREQ	0.00 Hz	\times
F8-15	Upper limit of skip FREQ band 3	$0.00 \mathrm{~Hz} \sim$ upper limit FREQ	0.00Hz	\times
F8-16	Operation when set FREQ lower than lower limit FREQ	0 : Run at lower limit FREQ 1: Run at 0 Hz 2: Stop	0	\times
F8-17	Time-delay of stop when set FREQ lower than lower limit FREQ	0.0s ~ 6553.5s	0.0s	\times
F8-18	Reserved	----	--	
F8-19	Cooling fan control	0 : Auto run 1: Always run after power up	0	\triangle

Par.	Designation	Scope	Default	Attr
F8-20	Action when run time attained	Ones place: action when consecutive run time attained: 0 : Run continued 1: Stop and fault reported Tens place: action when accumulative run time attained: 0 : Run continued 1: Stop and fault reported Hundreds place: unit of run time 0 : Second 1: Hour	000	\times
F8-21	Consecutive run time setting	0.0s(h)~6000.0s(h)	0.0 s(h)	\times
F8-22	Accumulative run time setting	0.0s(h)~6000.0s(h)	0.0 s(h)	\times
F8-24	Detected object of FREQ detection (FDT)	Ones place: FDT1 detected object 0 : Speed set value (FREQ after Accel/Decel) 1: Detected speed value Tens place: FDT2 detected object Same to FDT1	00	\triangle
F8-25	FDT1 upper value	$0.00 \mathrm{~Hz} \sim$ maximum FREQ	50.00 Hz	\triangle
F8-26	FDT1 lower value	$0.00 \mathrm{~Hz} \sim$ maximum FREQ	49.00 Hz	\triangle
F8-27	FDT2 upper value	$0.00 \mathrm{~Hz} \sim$ maximum FREQ	25.00 Hz	\triangle
F8-28	FDT2 loer value	$0.00 \mathrm{~Hz} \sim$ maximum FREQ	24.00 Hz	\triangle
Group F9 Protection Parameters				
F9-00	Overload alarm	Ones place: detection option: 0 : Always detect 1: Detect at constant speed only Tens place: compared with: 0 : Motor rated current	000	\times

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
		1: Drive rated current Hundreds place: drive action 0 : Alarm but run continued 1: Alarm and coast to stop		
F9-01	Overload alarm threshold	20.0\% ~200.0\%	180.0\%	\triangle
F9-02	Overload alarm activation time	0.1s~60.0s	5.0s	\triangle
F9-03	Overvoltage stall	0: Prohibited 1: Allowed	1	\times
F9-04	Overvoltage stall protection voltage	120\%~150\%	135\%	\times
F9-05	Fault auto-reset times	0~20	0	\times
F9-06	Auto-reset interval	2.0s~20.0s	2.0 s	\times
F9-07	Drive overheat alarm threshold	$0.0^{\circ} \mathrm{C} \sim 100.0^{\circ} \mathrm{C}$	$85.0^{\circ} \mathrm{C}$	\triangle
F9-08	Undervoltage stall	0: Disabled 1: Enabled	0	\times
F9-09	Protection action 1	Ones place: reserved Tens place: action at IGBT temperature measurement circuit fault ($\mathrm{E}-\mathrm{OH} 3$): 0 : Coast to stop 1: Alarm but run continued Hundreds place: reserved Thousands place: abnormal terminal communication: 0 : Coast to stop 1: Alarm but run continued	0000	\times
F9-10	Protection action 2	Ones place: abnormal power supply when running : 0: Coast to stop 1: Alarm but run continued	3000	\times

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
F9-13	Motor overload Protection	0 : no action 1 : action at motor rated current 2 : action at motor temperature measurement		
F9-14	Overload alarm activation time	0.1 ~ 15.0min		
F9-15	motor temperature measurement	$\begin{aligned} & 0: \mathrm{Al} 1 \\ & 1: \mathrm{Al2} \\ & 2: \text { reserved } \end{aligned}$		
F9-16	motor temperature by Protection	0.00V ~ 10.00V		
Group FA Process PID				
FA-00	PID setting	0 : FA-01 digital setting 1: Al1 2: Al2 3: VP(Operator panel) 4: X6/DI pulse input 5: Communication	0	\times
FA-01	PID digital setting	0.0\% 100.0%	50.0\%	\triangle
FA-02	PID feedback	0: Al1 1: Al2 2: VP(Operator panel) 3: Al1+Al2 4: Al1-AI2 5: $\operatorname{Max}\{\mathrm{Al} 1, \mathrm{Al} 2\}$ 6: $\operatorname{Min}\{\mathrm{Al} 1, \mathrm{Al} 2\}$ 7: X6/DI pulse input 8: Communication	0	\times
FA-03	PID positive and negative adjustment	0 : Positive adjustment 1: Negative adjustment	0	\times
FA-04	PID adjustment	Ones place: output FREQ 0 : Must be the same direction as the set run direction	11	\times

Par.	Designation	Scope	Default	Attr
		1: Opposite direction allowed Tens place: integration selection 0: Integral continued when FREQ attains upper/lower limit 1: Integral stopped when FREQ attains upper/lower limit		
FA-05	Proportional gain Kp1	0.0~100.0	50.0	\triangle
FA-06	Integration time Ti1	0.000s~50.000s	0.500s	\triangle
FA-07	Derivative time Td1	0.000s~50.000s	0.000s	\triangle
FA-08	Cutoff FREQ when opposite to rotary set direction	$0.00 \mathrm{~Hz} \sim$ maximum FREQ	50.00 Hz	\triangle
FA-09	PID offset limit	0.0\% 100.0%	0.0\%	\triangle
FA-10	PID derivative limit	0.0\% 100.0%	0.5\%	\triangle
FA-11	Filtering time of PID setting	0.00s~60.00s	0.00s	\triangle
FA-12	Filtering time of PID feedback	0.00s~60.00s	0.00s	\triangle
FA-13	Filtering time of PID output	0.00s~60.00s	0.00s	\triangle
FA-14	Proportional gain Kp2	0.0~100.0	50.0	\triangle
FA-15	Integration time Ti2	0.000s~50.000s	0.500s	\triangle
FA-16	Derivative time Td2	0.000s~50.000s	0.000s	\triangle
FA-17	PID parameter switch	0 : No switch, determined by parameters Kp1, Ti1 and Td1 1: Auto-switched on the basis of input offset 2: Switched by terminal	0	\times
FA-18	Input offset under PID auto-switch	0.0\%~100.0\%	20.0\%	\triangle
FA-19	Reserved	-	-	

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
FA-20	PID initial value	0.0\% $\sim 100.0 \%$	0.0\%	\times
FA-21	PID initial value holding time	0.0s~3600.0s	0.0s	\triangle
FA-22	Sampling period T	0.001s~50.000s	0.002s	\triangle
FA-23	PID feedback loss detection value	0.0\% ~100.0\%	0.0\%	\triangle
FA-24	PID feedback loss detection time	0.0s~30.0s	1.0s	\triangle
FA-25	PID computation option	0 : No computation in stop status 1: Computation continued in stop status	0	\triangle
Group Fb: Fixed length counting parameter				
Fb-00	Length setting	0~65535	1000	\triangle
Fb-01	Length unit	$\begin{aligned} & 0: m \\ & 1: 10 \mathrm{~m} \end{aligned}$	0	\triangle
Fb-02	Pulse number per meter	0.1~6553.5	100.0	\triangle
Fb-03	Action when the length attained	0 : Not stop 1: Stop	0	\triangle
Fb-04	Set count value	1~65535	1000	\triangle
Fb-05	Designated count value	1~65535	1000	\triangle
Group Fc Simple PLC				
Fc-00	FREQ set source of multi-step 0	0: Digital setting Fc-02 1: Digital setting F0-04 + control panel Λ / v adjustment 2: Digital setting F0-04 + terminal UP/DOWN adjustment 3: Al1 4: AI2 5: VP(Operator panel) 6: X6/DI pulse input 7: Process PID output 8: Communication	0	\times

Par.	Designation	Scope	Default	Attr
		0: Digital setting FC-03 1: Digital setting F0-04 + control panel N/v adjustment 2: Digital setting F0-04 + terminal UP/DOWN 3: Al1 4: Al2 5: VP(Operator panel) 6: X6/DI pulse input Fc-01	FREQ set source of multi-step 1	Process PID output
8: Communication				

Par.	Designation	Scope	Default	Attr
Fc-18	Simple PLC run mode	Ones place: PLC run mode 0 : Stop after a single cycle 1: Continue to run in the last FREQ after a single cycle 2: Cycle repeated Tens place: power loss memory 0: No memory on power loss 1: Memorized on power loss Hundreds place: starting mode 0 : Run from the first step "multi-step frequency 0 " 1: Continue to run from the step of stop (or fault) 2: Continue to run from the step and FREQ at which run stopped (or fault occurred) Thousands place: unit of simple PLC run time 0: Second (s) 1: Minute (min)	0	\times
Fc-19	Setting of multistep 0	Ones place: FREQ setting 0: Multi-step FREQ 0 (FC-02) 1: Al1 2: AI2 3: VP(Operator panel) 4: X6/DI pulse input 5: Process PID output 6: Multi-step FREQ 7: Communication Tens place: run direction 0 : Forward 1: Reverse 2: Determined by run command Hundreds place: Accel/Decel time	0.00 Hz	\triangle

Par.	Designation	Scope	Default	Attr
		0 : Accel/Decel time 1 1: Accel/Decel time 2 2: Accel/Decel time 3 3: Accel/Decel time 4		
Fc-20	Run time of step 0	0.0s(min) 6000.0 s (min)	0.0s	\triangle
Fc-21	Setting of step 1	Ones place: FREQ setting 0: Multi-step FREQ 1 (Fc-03) 1~7: Same as Fc-19 Tens place: run direction (same as Fc19) Hundreds place: Accel/Decel time option (same as Fc-19)	000	\times
Fc-22	Run time of step 1	0.0s(min) 6000.0 s (min)	0.0s	\triangle
Fc-23	Setting of step 2	Ones place: FREQ setting 0: Multi-step FREQ 2 (Fc-04) 1~7: Same as Fc-19 Tens place: run direction (same as Fc19) Hundreds place: Accel/Decel time option (same as Fc-19)	000	\times
Fc-24	Run time of step 2	0.0s(min)~6000.0s(min)	0.0s	\triangle
Fc-25	Setting of step 3	Ones place: FREQ setting 0: Multi-step FREQ 3 (Fc-05) 1~7: Same as Fc-19 Tens place: run direction (same as Fc- 19) Hundreds place: Accel/Decel time option (same as Fc-19)	000	\times
Fc-26	Run time of step 3	0.0s(min)~6000.0s(min)	0.0s	\triangle

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
Fc-27	Setting of step 4	Ones place: FREQ setting 0: Multi-step FREQ 4 (Fc-06) 1~7: Same as Fc-19 Tens place: run direction (same as Fc-19) Hundreds place: Accel/Decel time option (same as Fc-19)	000	\times
Fc-28	Run time of step 4	0.0s(min) 6000.0 s (min)	0.0s	\triangle
Fc-29	Setting of step 5	Ones place: FREQ setting 0: Multi-step FREQ 5 (Fc-07) 1~7: Same as Fc-19 Tens place: run direction (same as Fc-19) Hundreds place: Accel/Decel time option (same as Fc-19)	000	\times
Fc-30	Run time of step 5	0.0s(min) 6000.0 s (min)	0.0s	\triangle
Fc-31	Setting of step 6	Ones place: FREQ setting 0: Multi-step FREQ 6 (Fc-08) 1~7: Same as Fc-19 Tens place: run direction (same as Fc-19) Hundreds place: Accel/Decel time option (same as Fc-19)	000	\times
Fc-32	Run time of step 6	0.0s(min) 6000.0 s (min)	0.0s	\triangle
Fc-33	Setting of step 7	Ones place: FREQ setting 0: Multi-step FREQ 7 (Fc-09) 1~7: Same as Fc-19 Tens place: run direction (same as Fc-19) Hundreds place: Accel/Decel time option (same as Fc-19)	000	\times

Par.	Designation	Scope	Default	Attr
Fc-34	Run time of step 7	0.0s(min) 6000.0 s (min)	0.0s	\triangle
Fc-35	Setting of step 8	Ones place: FREQ setting 0: Multi-step FREQ 8 (Fc-10) 1~7: Same as Fc-19 Tens place: run direction (same as Fc-19) Hundreds place: Accel/Decel time option (same as Fc-19)	000	\times
Fc-36	Run time of step 8	0.0s(min) 6000.0 s (min)	0.0s	\triangle
Fc-37	Setting of step 9	Ones place: FREQ setting 0: Multi-step FREQ 9 (Fc-11) 1~7: Same as Fc-19 Tens place: run direction (same as Fc-19) Hundreds place: Accel/Decel time option (same as Fc-19)	000	\times
Fc-38	Run time of step 9	0.0s(min) 6000.0 s (min)	0.0s	\triangle
Fc-39	Setting of step 10	Ones place: FREQ setting 0: multi-step FREQ 10 (Fc-12) 1~7: Same as Fc-19 Tens place: run direction (same as Fc-19) Hundreds place: Accel/Decel time option (same as Fc-19)	000	\times
Fc-40	Run time of step 10	0.0s(min) $\sim 6000.0 \mathrm{~s}$ (min)	0.0s	\triangle
Fc-41	Setting of step 11	Ones place: FREQ setting 0: Multi-step FREQ 11 (Fc-13) 1~7: Same as Fc-19 Tens place: run direction (same as Fc-19) Hundreds place: Accel/Decel time option (same as Fc-19)	000	\times

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
Fc-42	Run time of step 11	0.0s(min) 6000.0 s (min)	0.0s	\triangle
Fc-43	Setting of step 12	Ones place: FREQ setting 0: Multi-step FREQ 12 (Fc-14) 1~7: Same as Fc-19 Tens place: run direction (same as Fc-19) Hundreds place: Accel/Decel time option (same as Fc-19)	000	\times
Fc-44	Run time of step 12	0.0s(min) 6000.0 s (min)	0.0s	\triangle
Fc-45	Setting of step 13	Ones place: FREQ setting 0: Multi-step FREQ 12 (Fc-15) 1~7: Same as Fc -19 Tens place: run direction (same as Fc-19) Hundreds place: Accel/Decel time option (same as Fc-19)	000	\times
Fc-46	Run time of step 13	0.0s(min) 6000.0 s (min)	0.0s	\triangle
Fc-47	Setting of step 14	Ones place: FREQ setting 0: Multi-step FREQ 12 (Fc-16) 1~7: Same as Fc-19 Tens place: run direction (same as Fc-19) Hundreds place: Accel/Decel time option (same as Fc-19)	000	\times
Fc-48	Run time of step 14	0.0s(min) $6000.0 \mathrm{~s}(\mathrm{~min})$	0.0s	\triangle
Fc-49	Setting of step 15	Ones place: FREQ setting 0: Multi-step FREQ 15 (Fc-17) 1~7: Same as Fc-19 Tens place: run direction (same as Fc-19) Hundreds place: Accel/Decel time option (same as Fc-19)	000	\times
Fc-50	Run time of step 15	0.0s(min) $6000.0 \mathrm{~s}(\mathrm{~min})$	0.0s	\triangle

Par.	Designation	Scope	Default	Attr
Group Fd MODBUS Communication Parameters				
Fd-00	SCI port selection	0 : Local 485 port 1: Optional 232 port	0	\times
Fd-01	SCI port communication configuration	Ones place: baud rate 0: 4800bps 1: 9600bps 2: 19200bps 3: 38400bps 4: 57600bps 5: 115200bps Tens place: data format 0: 1-8-2-N format, RTU 1: 1-8-1-E format, RTU 2: 1-8-1-O Format, RTU 3: 1-7-2-N format, ASCII 4: 1-7-1-E format, ASCII 5: 1-7-1-O format, ASCII Hundreds place: connection type 0: Direct cable connection (232/485) 1: MODEM (232) Thousands place: communication data handling at power loss 0 : Saved at power loss 1: Not saved at power loss	0001	\times
Fd-02	Local address of SCI port communication	0~247, 0 is broadcast address	1	\times
Fd-03	Time out detection of SCI port communication	0.0s~1000.0s	0.0s	\times
Fd-04	Time delay of SCI port communication	Oms~1000ms	Oms	\times
Fd-05	Master/Slave option	0 : PC controls this drive 1: As master 2: As slave	0	\times

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
Fd-06	Parameter store address when this drive working as master	$\begin{aligned} & \text { 0:F0-04 } \\ & \text { 1:FA-01 } \end{aligned}$	0	\times
Fd-07	Proportional factor of received FREQ	0.0~1000.0\%	100.0\%	\triangle
Group FE: User-defined Display Parameters				
Fe-00	User-defined display parameter 1	Setting range of thousands place: A, b, C, d, E, F, H, L, U Setting range of hundreds place: 0~9 Setting range of tens place: 0~9 Setting range of ones place: 0~9	FE-00	\times
Fe-01	User-defined display parameter 2	Same as FE-00	FE-00	\times
Fe-02	User-defined display parameter 3	Same as FE-00	FE-00	\times
Fe-03	User-defined display parameter 4	Same as FE-00	FE-00	\times
Fe-04	User-defined display parameter 5	Same as FE-00	FE-00	\times
Fe-05	User-defined display parameter 6	Same as FE-00	FE-00	\times
Fe-06	User-defined display parameter 7	Same as FE-00	FE-00	\times
Fe-07	User-defined display parameter 8	Same as FE-00	FE-00	\times
Fe-08	User-defined display parameter 9	Same as FE-00	FE-00	\times
Fe-09	User-defined display parameter 10	Same as FE-00	FE-00	\times
Fe-10	User-defined display parameter 11	Same as FE-00	FE-00	\times
Fe-11	User-defined display parameter 12	Same as FE-00	FE-00	\times

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
Fe-12	User-defined display parameter 13	Same as FE-00	FE-00	\times
Fe-13	User-defined display parameter 14	Same as FE-00	FE-00	\times
Fe-14	User-defined display parameter 15	Same as FE-00	FE-00	\times
Fe-15	User-defined display parameter 16	Same as FE-00	FE-00	\times
Fe-16	User-defined display parameter 17	Same as FE-00	FE-00	\times
Fe-17	User-defined display parameter 18	Same as FE-00	FE-00	\times
Fe-18	User-defined display parameter 19	Same as FE-00	FE-00	\times
Fe-19	User-defined display parameter 20	Same as FE-00	FE-00	\times
Group FE: Password parameter setting group				
FF-00	Setting of user password	0~FFFF	0000	\triangle
FF-01	Parameter display	0: Display all parameters 1: Only display FF-00 and FF-01 2: Only display FF-00, FF-01 and user-defined FE-00~FE-19	0	\times
FF-02	Parameter protection	0 : All parameter programming allowed 1: Only FF-00 and this parameter programming allowed	0	\times
FF-03	Parameter restoration	0 : No operation 1: Clear fault record 2: Restore all parameters to factory default (excluding motor parameters) 3: Restore all parameters to factory default (including motor parameters) 4: Restore all parameters to backup parameters	0	\times

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
FF-04	Parameter backup	0 : No operation 1: Backup all parameters	0	\times
FF-05	Parameter copy	0 : No operation 1: Reserved 2: Parameter copied (excluding motor parameters) to control board 3: Parameter copied (including motor parameters) to control board	0	\times
Group A1 Wobble Frequency				
A1-00	Wobble FREQ function setting	0 : Wobble FREQ function disabled 1: Wobble FREQ function enabled	0	\times
A1-01	Wobble FREQ run setting	Ones place: started method 0 : Automatically 1: Started by terminal Tens place: amplitude control 0: Relative to center FREQ 1: Relative to maximum FREQ Hundreds place: wobble FREQ memorized when stop 0 : Memory enabled 1: Memory disabled Thousands place: wobble FREQ memorized on power loss 0 : Memory enabled 1: Memory disabled	0000	\times
A1-02	Pre-wobble FREQ	$0.00 \mathrm{~Hz} \sim 600.00 \mathrm{~Hz}$	0.00 Hz	\triangle
A1-03	Pre-wobble FREQ holding time	0.0s~3600.0s	0.0s	\triangle
A1-04	Wobble FREQ amplitude	0.0\% 50.0%	0.0\%	\triangle
A1-05	Hop FREQ	0.0\%~50.0\% (relative to A1-04)	0.0\%	\triangle
A1-06	Cycle of wobble FREQ	0.1s~999.9s	0.0s	\triangle

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
A1-07	Triangular wave ramp-up time	$0.0 \% \sim 100.0 \%$ (of wobble FREQ cycle)	0.0\%	\triangle
Group U0 Status Monitoring				
U0-00	Run FREQ	$0.00 \mathrm{~Hz} \sim 600.00 \mathrm{~Hz}$	0.00 Hz	\bigcirc
U0-01	Set FREQ	$0.00 \mathrm{~Hz} \sim 600.00 \mathrm{~Hz}$	0.00 Hz	\bigcirc
U0-02	Bus voltage	0V 65535V	OV	\bigcirc
U0-03	Output voltage	0V 65535V	OV	\bigcirc
U0-04	Output current	0.0A~6553.5A	0.0A	\bigcirc
U0-05	Output torque	-300.0\% 300.0\%	0.0\%	\bigcirc
U0-06	Output power	0.0\% 300.0%	0.0\%	\bigcirc
U0-07	Master FREQ setting	$0.00 \mathrm{~Hz} \sim 600.00 \mathrm{~Hz}$	0.00 Hz	\bigcirc
U0-08	Auxiliary FREQ setting	$0.00 \mathrm{~Hz} \sim 600.00 \mathrm{~Hz}$	0.00 Hz	\bigcirc
U0-09	Heat sink temperature 1	$-40.0^{\circ} \mathrm{C} \sim 100.0^{\circ} \mathrm{C}$	$0.0{ }^{\circ} \mathrm{C}$	\bigcirc
U0-10	Heat sink temperature 2	$-40.0^{\circ} \mathrm{C} \sim 100.0^{\circ} \mathrm{C}$	$0.0{ }^{\circ} \mathrm{C}$	\bigcirc
U0-11	FAL fault source	0 : No fault 1: IGBT overcurrent 2: Reserved 3: Output grounding fault 4: Output overcurrent 5: DC bus overvoltage 6: Other sources	0	\bigcirc
U0-12	CtC fault source	0 : No fault 1: U-phase current detection circuit fault 2: V-phase current detection circuit fault 3: W-phase current detection circuit fault	0	0
U0-13	Digital input terminal status	00~7F	00	\bigcirc
U0-14	Digital output terminal status	0~7	0	0

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
U0-15	Al1 input voltage	0.00V~10.00V	0.00 V	(
U0-16	Al2 input voltage	-10.00V~10.00V	0.00 V	(
U0-17	AO1 output	0.0\% ~100.0\%	0.0\%	(
U0-18	X6/DI HF pulse FREQ	$0.0 \mathrm{kHz} \sim 50.0 \mathrm{kHz}$	0.0 KHz	(
U0-19	PID set	0.0\% ~100.0\%	0.0\%	©
U0-20	PID feedback	0.0\% ~100.0\%	0.0\%	()
U0-21	PID input offset	-100.0\% 100.0\%	0.0\%	()
U0-22	PLC step	0~15	0	()
U0-23	V/f separated target voltage	0.0\% 100.0%	0.0\%	()
U0-24	V/f separated actual output voltage	0.0\%~100.0\%	0.0\%	©
U0-25	Cumulative power-up time	Oh~65535h	OH	©
U0-26	Cumulative run time	Oh~65535h	OH	©
U0-27	Terminal count value	0~65535	0	()
U0-28	Reserved	---	-	
U0-29	Reserved	-	-	
U0-30	Reserved	-	-	
U0-31	Higher-bit numbers of actual length	0~65	0	©
U0-32	Lower-bit numbers of actual length	0~65535	0	©
U0-33	Master FREQ set source	0: Digital setting + adjustment through Λ / v on control panel 1: Digital setting + terminal UP/DOWN adjustment 2: Analog input Al1 3: Analog input AI2 4: VP(Operator panel) 5: X6/DI pulse input	0	©

Par.	Designation	Scope	Default	Attr
U0-33		6: Process PID output 7: PLC		

Par.	Designation	Scope	Default	Attr
U0-41	Higher-bit numbers of terminal UP/DOWN stored value	-1~1	0	©
U0-42	Lower-bit numbers of terminal UP/DOWN stored value	0.00~655.35 Hz	0.00 Hz	©
Group U1 History Fault				
U1-00	History fault 1 (latest)	0 : No fault 1: Accel overcurrent (E-oC1) 2: Constant-speed overcurrent (E - Oc2) 3: Decel overcurrent (E-oC3) 4: Accel overvoltage (E-oV1) 5: Constant-speed overvoltage (E- oV2) 6: Decel overvoltage (E-oV3) 7: Drive overloaded (E-oL1) 8: Motor overloaded (E-oL2) 9: Inverter module overloaded (E-oL3) 10: Module protection (E-FAL) 11: Module overheated (E-oH1) 12: Motor overheated (PTC) (E-oH2) 13: Autotuning failed (E-tUN) 14: Current detection abnormal (E - CtC) 15: Ground short-circuit protection at output side (E-GdP) 16: Input power supply fault (E-ISF) 17: Phase loss at output side (E-oPL) 18: Analog terminal functional mutex (E-TEr) 19: External equipment malfunction (E-PEr)	0	©

Par.	Designation	Scope	Default	Attr
		20: Continuous run time attained (E to2) 21: Accumulative run time attained (E to3) 22: Power supply abnormal in running (E-SUE) 23: EEPROM read/write fault (E-EPr) 24: Port communication abnormal (E - TrC) 25: CPU interference as a fault (E - CPU) 26: 5V power supply out-of-limit (E- SP1) 27: 10V power supply out-of-limit (E- SP2) 28: Al input out-of-limit (E-AIP) 29: Undervoltage protection (E-LoU) 30: PID feedback loss (E-Plo) 31-45: Reserved		
U1-01	Run frequency at fault 1	$0.00 \mathrm{~Hz} \sim 600.00 \mathrm{~Hz}$	0.00 Hz	(
U1-02	Output current at fault 1	0.0A~6553.5A	0.0A	(
U1-03	Bus voltage at fault 1	OV~10000V	OV	©
U1-04	Temperature 1 of heat sink at fault 1	$-40.0^{\circ} \mathrm{C} \sim 100.0^{\circ} \mathrm{C}$	$0.0^{\circ} \mathrm{C}$	(
U1-05	Temperature 2 of heat sink at fault 1	$-40.0^{\circ} \mathrm{C} \sim 100.0^{\circ} \mathrm{C}$	$0.0^{\circ} \mathrm{C}$	©
U1-06	Input terminal status at fault 1	0~FFFF	0000	(
U1-07	Output terminal status at fault 1	0~FFFF	0000	(
U1-08	Cumulative run time at fault 1	Oh~65535h	Oh	(

Chapter 5 Parameter Table

Par.	Designation	Scope	Default	Attr
U1-09	Code of fault 2	Same as U1-00	0	(
U1-10	Run frequency at fault 2	$0.00 \mathrm{~Hz} \sim 600.00 \mathrm{~Hz}$	0.00Hz	©
U1-11	Output current at fault 2	0.0A~6553.5A	0.0A	(
U1-12	Bus voltage at fault 2	0V~10000V	OV	()
U1-13	Temperature 1 of heat sink at fault 2	$-40.0^{\circ} \mathrm{C} \sim 100.0^{\circ} \mathrm{C}$	$0.0^{\circ} \mathrm{C}$	(
U1-14	Temperature 2 of heat sink at fault 2	$-40.0^{\circ} \mathrm{C} \sim 100.0^{\circ} \mathrm{C}$	$0.0^{\circ} \mathrm{C}$	©
U1-15	Input terminal status at fault 2	0~FFFF	0000	©
U1-16	Output terminal status at fault 2	0~FFFF	0000	(
U1-17	Cumulative run time at fault 2	Oh~65535h	Oh	()
U1-18	Code of fault 3	Same as U1-00	0	()
U1-19	Run frequency at fault 3	$0.00 \mathrm{~Hz} \sim 600.00 \mathrm{~Hz}$	0.00 Hz	(
U1-20	Output current at fault 3	0.0A~6553.5A	0.0A	(
U1-21	Bus voltage at fault 3	0V~1000V	OV	()
U1-22	Temperature 1 of heat sink at fault 3	$-40.0^{\circ} \mathrm{C} \sim 100.0^{\circ} \mathrm{C}$	$0.0^{\circ} \mathrm{C}$	(
U1-23	Temperature 2 of heat sink at fault 3	$-40.0^{\circ} \mathrm{C} \sim 100.0^{\circ} \mathrm{C}$	$0.0^{\circ} \mathrm{C}$	(
U1-24	Input terminal status at fault 3	0~FFFF	0000	©
U1-25	Output terminal status at fault 3	0~FFFF	0000	©
U1-26	Cumulative run time at fault 3	Oh~65535h	Oh	©

EMC attention

6.1 EMC Definition 76
6.2 Introduction to EMC standards 76
6.3 EMC Guidance 76

6.1 EMC Definition

Electromagnetic compatibility refers to the ability of electrical equipment to operate in an environment of electromagnetic interference, not to interfere with the electromagnetic environment and to achieve its functions steadily.

6.2 Introduction to EMC standards

According to the national standard GB/T12668.3 requirements, products need to meet the requirements of electromagnetic interference and anti-electromagnetic interference. Our existing products implement the latest international standards: IEC/EN61800-3:2004 (Adjustable speed power drive systems part 3: EMC requirements and specific test methods), equivalent to the national standard GB/T12 668.3.

IEC/EN61800-3 mainly from the electromagnetic interference and anti-electromagnetic interference two aspects of the product inspection, electromagnetic interference mainly on the product radiation interference, conduction interference and harmonic interference testing (for civilian products have this requirement). Anti-electromagnetic interference mainly on the product's conduction immunity, radiation immunity, surge immunity, rapid mutation pulse group immunity, ESD immunity and power supply low-frequency end immunity (specific test items are: 1. input voltage drop, Immunity test of interruption and change; 2. phase gap immunity test; 3 . harmonic input immunity test; 4 . input frequency change test; 5 . input voltage imbalance test; 6. input voltage fluctuation test) test. In accordance with the above-mentioned IEC/EN61800-3 strict requirements for testing, our products in accordance with the guidance of 6.3 for installation and use, in thegeneral industrial environment will have good electromagnetic compatibility.

6.3 EMC Guidance

6.3.1 Electromagnetic interference and installation precautions:

There are two kinds of electromagnetic interference, one is the interference of the surrounding environment electromagnetic noise to the product, the other is the interference of the product to the surrounding equipment, for the interference is relatively large occasions, it is recommended to add input reactors.

Installation considerations:

(1) The ground wire of products and other electrical products should be well grounded;

2 Product power input and output power lines and weak electrical signal lines (e.g. control lines) as far as possible do not parallel arrangement, when conditions vertical arrangement;

3 The output power line of the product is recommended to use shielded cable, or steel pipe to shield the power line, and the shield layer should be reliably grounded, for the lead of the disturbed equipment is recommended to use twisted pair shielding control line, and the shielding layer is reliably grounded;
(4) For motor cables longer than 100 m , an output filter or reactor is required.

6.3.2 The treatment method by which the surrounding electromagnetic equipment interferes with the product:

The general cause of the electromagnetic effect on the product is the large number of relays, contactors or electromagnetic brakes installed near the product. When the product is disturbed by the wrong action, it is recommended to use the following methods to resolve:
(1) Add surge suppressors to devices that cause interference;
(2) The product input is filled with filters, specifically reference 6.3. 5 to operate;

3 The product controls the signal line and the lead of the detection line with a shielded cable and securely grounds the shield.

6.3.3 How the product interferes with peripheral equipment:

There are two types of noise in this part: one is the product radiation interference, and the other is the product conduction interference. These two types of interference cause the surrounding electrical equipment to be induced by electromagnetic or static electricity. In turn, the device produced a mis-action. For several different interference situations, refer to the following methods to resolve:
(1) For measuring instruments, receivers and sensors, etc., the general signal is relatively weak, if the product is closer or in the same control cabinet, vulnerable to interference and wrong action, it is recommended to use the following methods to solve: as far away from interference sources as possible; Equally tied together, the signal line and the power line with shielded cables, and well grounded, in the output side of the product with ferric oxygen magnetic ring (select the suppression frequency in the range of 30 to 1000 MHz), and around 2 to 3, For the bad situation, you can choose to add EMC output filter;
(2) Interference equipment and products using the same power supply, resulting in conduction interference, if the above methods can not eliminate interference, should be installed between the product and the power supply EMC filter (specific reference 6.35 to carry out the selection operation);
(3) Peripherals are grounded separately to eliminate interference from leakage currents in the product ground wire when co-grounding.

6.3.4 Leakage current and handling:

There are two forms of leakage current when using a product: one is a ground-toground leakage current, and the other is a leakage current between a line and a line.
(1) Factors and solutions that affect the ground leakage current:

There is a distribution capacitor between the wire and the earth, the greater the distribution capacitor, the greater the leakage current, effectively reducing the distance between the product and the motor to reduce the distribution capacitan$c e$. The higher the carrier frequency, the greater the leakage current. The carrier frequency can be reduced to reduce leakage current. However, reducing the carrier frequency can lead to increased motor noise, please note that adding an reactor is also an effective solution to leakage current.

The leakage current increases with the increase of the circuit current, so when the motor is high, the corresponding leakage current is large.
(2) Factors and solutions that cause current leakage between lines:

There is a distribution capacitance between the product output wiring, and if the current passing through the line contains a high number of harmonics, it may cause resonance and leakage current. Using a thermal relay at this point may cause it to move incorrectly.

The solution is to reduce the carrier frequency or install the output reactor. It is recommended that the motor is not installed before the use of the appliance, using the electronic overflow protection function of the product.

6.3.4 Note that the EMC input filter is added to the power input:

(1) Use the filter strictly in accordance with the rating, because the filter belongs to Class I electrical appliances, the filter metal shell should be a large area with the installation cabinet metal contact is good, and requires good conductivity, otherwise there will be a risk of electric shock and seriously affect the EMC effect;
(2) Through EMC testing, it is found that the filter must be on the same common ground as the product PE end, otherwise the EMC effect will be seriously affected.
(3) The filter is installed as close as possible to the power input of the appliance.

Chapter

[^0]Once drive fault occurs, please identify the causes of fault carefully and make a detailed record of fault symptom. To seek services, please contact the dealer. Parameters U1-00, U1-09 and U1-18 are used to view the records of fault 1, fault 2 and fault 3 . Faults are recorded with numeric codes (1~46), while the fault information that corresponds to each numeric fault code is specified in the table below.

7.1 Table of Fault Codes

Fault code	Fault display	Fault description	Causes	Solutions
1	E-oC1	Accel overcurrent	Torque boost is too big under V/f control	Reduce torque boost value
			Start frequency is too high	Drop start frequency
			Accel time is too short	Prolong the Accel time
			Motor parameters are improperly set	Set the parameters correctly according to motor nameplate
			Output short circuit (phase-to-phase short circuit or output ground short circuit)	Check motor connection and output ground impedance
			Overload is too heavy	Reduce the load
			Inappropriate V/f curve under V/f control	Set V/f curve correctly
			Restart the rotating motor	Reduce current limited value or flying start
2	E-oC2	Canst-speed overcurrent	Output short circuit (phase-to-phase short circuit or output ground short circuit)	Check motor connection and output ground impedance
			Overload is too heavy	Reduce the load
			Power rating of the drive is relatively small	Select appropriate drive power rating
			Input voltage is too low	Check power grid voltage
3	E-oC3	Canst-speed overcurrent	Output short circuit (phase-to-phase short circuit or output ground short circuit)	Check motor connection and output ground impedance
			Load inertia is too big	Use dynamic brake

Fault code	Fault display	Fault description	Causes	Solutions
3	E-oC3	Canst-speed overcurrent	Decel time is too short	Prolong the Decel time
			Input voltage is too low	Check power grid voltage
4	E-ov1	Accel overvoltage	Load inertia is too big	Use dynamic brake
			Abnormal input volt	Check power grid voltage
			Output short circuit (phase-to-phase short circuit or output ground short circuit)	Check motor connection and output ground impedance
5	E-ov2	Constantspeed overvoltage	Load variation is too big	Check the load
			Abnormal input voltage	Check power grid voltage
			Output short circuit (phase-to-phase short circuit or output ground short circuit)	Check motor connection and output ground impedance
			Improper parameter setting of regulator under SVC control	Properly set regulator parameters
6	E-ov3	Decel overvoltage	Load inertia is too big	Use dynamic braking
			Abnormal input voltage	Check power grid voltage
			Output short circuit (phase-to-phase short circuit or output ground short circuit)	Check motor connection and output ground impedance
			Improper parameter setting of regulator under SVC control	Properly set regulator parameters
			Decel time is too short	Prolong the Decel time
7	E-oL1	Drive overloaded	Torque boost is too big under V/f control	Reduce torque boost value
			Start FREQ is too high	Drop start frequency
			Accel/Decel time is too short	Prolong the Accel/Decel time
			Motor parameters are improperly set	Set the parameters correctly according to motor nameplate

	Fault code	Fault display	Fault description	Causes	Solutions
	7	E-oL1	Drive overloaded	Output short circuit (phase-to-phase short circuit and output ground short circuit)	Check motor connection and output ground impedance
				Load is too heavy	Reduce the load
				Inappropriate V/f curve under V/f control	Set V/f curve correctly
				Restart the rotary motor	Reduce current limited value or flying start
	8	E-oL2	Motor overloaded	Torque boost is too big under V/f control	Reduce torque boost value
				Inappropriate V/f curve under V/f control	Set V/f curve correctly
				Motor parameters are improperly set	Set the parameters correctly according to motor nameplate
				Improper setting of motor overloaded protection time	Properly set the motor overloaded protection time
				Motor stalled or sharp variation of load	Identify the causes of motor stalling or check the load condition
				Long-time running of ordinary motor at low speed with heavy load	Select variable frequency motor
	9	E-oL3	Inverter module overload protection	Overcurrent	Handle it with the methods for overcurrent
				Input power supply abnormal	Check input power grid voltage
				Motor output abnormal	Check the motor or motor connection
				Inverter module abnormal	Seek services
$$	10	E-FAL	Module protection	Overvoltage or overcurrent	Refer to the solutions of overvoltage or overcurrent
$\stackrel{\sim}{v}$				Output short circuit (phase-to-phase short circuit or output ground short circuit)	Check motor connection and output ground impedance
				Loose connection of control board	Pull out and reinsert the cables of control board

Fault code	Fault display	Fault description	Causes	Solutions
10	E-FAL	Module protection	Direct connection of inverter module	Seek services
			Control board abnormal	Seek services
			Switching power supply failed	Seek services
11	$\mathrm{E}-\mathrm{oH} 1$	Module (IGBT) thermal protection	Ambient temperature is too high	Drop ambient temperature
			Fan failed	Replace the fan
			Air duct blocked	Clear air duct
			Temperature sensor abnormal	Seek services
			Inverter module mounting abnormal	Seek services
12	$\mathrm{E}-\mathrm{oH} 2$	Motor (PTC) thermal protection	Ambient temperature is too high	Drop ambient temperature
			Improper setting of motor thermal protection point	Correctly set motor thermal protection point
			Thermal detection circuit failed	Seek services
13	E-tUN	Autotuning failed	Bad motor connection	Check motor connection
			Autotuning during rotation of the motor	Autotuning in stationary status of the motor
			Big error between real motor parameters and the setting	Set the parameters correctly according to motor nameplate
14	$\mathrm{E}-\mathrm{CtC}$	Current detection abnormal	Abnormal connection between control board and drive board	Check and re-connection
			Abnormal current detection circuit of control board	Seek services
			Abnormal current detection circuit of drive board	Seek services
			Current sensor failed	Seek services
			SMPS failed	Seek services

Chapter 7 Fault Causes and Troubleshooting

Fault code	Fault display	Fault description		Causes

Fault code	Fault display	Fault description	Causes	Solutions
24	E-TrC	Port communicati on abnormal	Improper setting of baud rate	Set properly
			Communication port disconnected	Reconnected
			Upper computer/device does not work	Make upper computer/device work
			Drive communication parameter error	Set properly
25	E-CPU	Abnormal power loss	Abnormal power loss in last operation	RESET the fault
			Faulty control board	Seek services
26	E-SP1	5 V supply out-of-limit	SMPS failed	Seek services
			Control board failed	Seek services
27	E-SP2	10 V supply out-of-limit	SMPS failed	Seek services
			Control board failed	Seek services
28	E-AIP	Al input out-of-limit	Control board failed	Seek services
			Al input is too high or low	Set AI input within correct range
29	E-LoU	Undervoltage protection	DC bus voltage is too low	Check input voltage if it is too low or the drive is the process of power loss
30	E-Plo	PID feedback lost	Abnormal PID feedback channel abnormal	Check the feedback channel
			Inappropriate setting of PID parameters	Set properly

WARRANTY

(1) The company solemnly promises that users will enjoy the following warranty services from the date of purchase of products from our company (hereinafter referred to as the manufacturer).
(2) Since the product was purchased by the user from the manufacturer, enjoy the following three guarantee services:
\square Return, replacement and repair within 30 days of delivery:
\square Replacement and repair within 90 days of delivery:
\square Repair within 18 months of delivery:
\square Except when exporting abroad.
(3) This product enjoys lifetime paid service from the date of purchase by the user from the manufacturer.
(4) Disclaimer: Product failure caused by the following reasons is not covered by the manufacturer's free warranty service:
\square Failure caused by the user's use and operation in accordance with the requirements of the «Instruction Manual»:
\square Failure caused by the user to repair or modify the product without communicating with the manufacturer:
■ Failure caused by abnormal aging of the product due to poor user environment:
■ Failures caused by natural disasters such as earthquakes, fires, floods or abnormal voltages:
\square Damage to the product during transportation (the transportation method is specified by the customer, and the company assists in handling the cargo consignment procedures)
(5) Under the following conditions, manufacturers have the right not to provide warranty services:

〕. When the manufacturer's product logo, trademark, nameplate, etc. are damaged or unrecognizable:
\square When the user fails to pay the purchase price in accordance with the signed contract:
\square The user intentionally conceals the manufacturer's after-sales service unit when the product is installed, wired, operated, maintained or otherwise improperly used
(6) For the service of return, replacement and repair, the company must return or return to the company, and it can only be returned or repaired after confirming the responsibility vested.

WARRANTY CARD

User information			
User name			
User address			
Postal code		Contact person	
Tel		Fax	
Machine type	Agent / Reseller Information		
Supplier			
Contact		Delivery date	
Tel			

CERTIFICATE OF QUALITY

QC test:

\qquad
This product has been tested by our company's quality department, and its performance meets the standards, passes the inspection, and is approved to leave the factory.

[^0]: 7.1 Table of Fault Codes82

